Основные законы оптики. Полное отражение

Оптика. Квантовая природа излучения

Элементы геометрической и электронной оптики Основные законы оптики. Полное отражение

Еще до установления природы света были известны следующие основные законы оптики:

- закон прямолинейного распространения света в оптически однородной среде;

- закон независимости световых пучков (справедлив только в линейной оптике);

- закон отражения света;

- закон преломления света.

Закон прямолинейного распространения света: свет в оптически однородной среде распространяется прямолинейно.

Доказательством этого закона является наличие тени с резкими границами от непрозрачных предметов при освещении их точечными источниками света (источники, размеры которых значительно меньше освещаемого предмета и расстояния до него). Тщательные эксперименты показали, однако, что этот закон нарушается, если свет проходит сквозь очень малые отверстия, причем отклонение от прямолинейности распространения тем больше, чем меньше отверстия.

Закон независимости световых пучков: эффект, производимый отдельным пучком, не зависит от того, действуют ли одновременно остальные пучки или они устранены. Разбивая световой поток на отдельные световые пучки (например, с помощью диафрагм), можно показать, что действие выделенных световых пучков независимо.

Если свет падает на границу раздела двух сред (двух прозрачных веществ), то падающий луч I (рис. 229) разделяется на два – отраженный II и преломленный III, направления которых задаются законами отражения и преломления.

Рис. 229

Закон отражения: отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром, проведенным к границе раздела двух сред в точке падения; угол отражения равен углу падения:

Закон преломления: луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела в точке падения, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред:

(165.1)

где относительный показатель преломления второй среды относительно первой. Нижние индексы в обозначениях углов указывают, в какой среде (первой или второй) идет луч.

Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления:

(165.2)

Абсолютным показателем преломления среды называется величина n, равная отношению скорости с электромагнитных волн в вакууме к их фазовой скорости v в среде:

(165.3)

Сравнение с формулой (162.3) дает, что , где и — соответственно электрическая и магнитная проницаемости среды. Учитывая (165.2), закон преломления (165.1) можно записать в виде

(165.4)

Из симметрии выражения (165.4) вытекает обратимость световых лучей. Если обратить луч III (рис.229), заставив его падать на границу раздела под углом , то преломленный луч в первой среде будет распространяться под углом , т. е. пойдет в обратном направлении вдоль луча I.

Если свет распространяется из среды с большим показателем преломления (оптически более плотной) в среду с меньшим показателем преломления (оптически менее плотную) ( > ), например из стекла в воду, то, согласно (165.4),

и преломленный луч удаляется от нормали и угол преломления больше, чем угол падения (рис. 230, а). С увеличением угла падения увеличивается угол преломления (рис. 230, б, в) до тех пор, пока при некотором угле падения ( = ) угол преломления не окажется равным /2. Угол называется предельным углом.

При углах падения > весь падающий свет полностью отражается (рис. 230, г).

По мере приближения угла падения к предельному интенсивность преломленного луча уменьшается, а отраженного — растет (рис.230, ав). Если = , то интенсивность преломленного луча обращается в нуль, а интенсивность отраженного равна интенсивности падающего (рис. 230, г). Таким образом, при углах падения в пределах от до /2 луч не преломляется, а полностью отражается в первую среду, причем интенсивности отраженного и падающего лучей одинаковы. Это явление называется полным отражением.

Предельный угол определим из формулы (165.4) при подстановке в нее = /2. Тогда

(165.5)

Уравнение (165.5) удовлетворяет значениям угла при . Следовательно, явление полного отражения имеет место только при падении света из среды оптически более плотной в среду оптически менее плотную.

Явление полного отражения используется в призмах полного отражения. Показатель преломления стекла равен , поэтому предельный угол для границы стекло — воздух . Поэтому при падении света на границу стекло — воздух при i > 42° всегда будет иметь место полное отражение. На рис. 231, ав показаны призмы полного отражения, позволяющие: а) повернуть луч на 90°; б) повернуть изображение; в) обернуть лучи. Такие призмы применяются в оптических приборах (например, в биноклях, перископах), а также в рефрактометрах, позволяющих определять показатели преломления тел (по закону преломления, измеряя , определяем относительный показатель преломления двух сред, а также абсолютный показатель преломления одной из сред, если показатель преломления второй среды известен).

Рис. 231

Явление полного отражения используется также в световодах (светопроводах), представляющих собой тонкие, произвольным образом изогнутые нити (волокна) из оптически прозрачного материала. В волоконных деталях применяют стеклянное волокно, световедущая жила (сердцевина) которого окружается стеклом — оболочкой из другого стекла с меньшим показателем преломления. Свет, падающий на торец световода под углами, большими предельного, претерпевает на поверхности раздела сердцевины и оболочки полное отражение и распространяется только по световедущей жиле.

Таким образом, с помощью световодов можно как угодно искривлять путь светового пучка. Диаметр световедущих жил лежит в пределах от нескольких микрометров до нескольких миллиметров. Для передачи изображений, как правило, применяются многожильные световоды. Вопросы передачи световых волн и изображений изучаются в специальном разделе оптики — волоконной оптике, возникшей в 50-е годы XX столетия. Световоды используются в электронно-лучевых трубках, в электронно-счетных машинах, для кодирования информации, в медицине (например, диагностика желудка), для целей интегральной оптики и т.д.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: