double arrow

Технология эмпирического социологического исследования


Технология эмпирических исследований включает в себя после­довательность операций, необходимых для получения информации об изучаемом явлении. Во всех отраслевых социологических на­уках она одинакова. В социологической литературе существуют различные представления об этапах социологического исследова­ния. Н. Смелзер выделяет три этапа: формулировку гипотез; сбор и обработку данных; анализ и обобщение данных [Смелзер, 27-34], А.Г. Здравомыслов — пять: составление программы; постро­ение выборки; разработку методики; сбор и обработку материала; анализ и интерпретацию данных [Здравомыслов, 44]. Обобщая эти и другие подходы, можно утверждать, что всякое социологическое исследование проходит три этапа:

• подготовите льный;

• полевой;

• аналитический.

Первый этап начинается с разработки программы и заканчива­ется пилотажным (пробным) исследованием. Программа исследо­вания обычно состоит из трех частей: методологической, методи­ческой и организационной [Капитонов, 387—503]. Методологичес­кая часть программы содержит характеристику проблемы, цели, задач, объекта, предмета, концепции исследования, выборки, ос­новных понятий, показателей, гипотез, а методическая — характе­ристику методов сбора и анализа данных, логической структуры инструментария, схемы обработки первичной информации. Орга­низационная часть (рабочий план) исследования включает в себя временной график осуществления необходимых работ, рабочие до­кументы (формы анкет, бланков, карточек, инструкций участникам и руководителям полевых и аналитических работ), калькуляцию

[32]

сметной стоимости этих работ [Капитонов, 485—496; Социология. Основы общей теории, 378-380; Ядов, 1995, 288-309].

Пилотажное исследование (пилотаж) проводится с целью про­верки качества инструментария, предназначенного для полевого исследования. В ходе пилотажа на ограниченном материале уста­навливается валидность (пригодность) сконструированного при разработке программы измерительного инструмента: показателей и шкал. Критериями пригодности использования этого инструмента­рия являются распределение значений измеряемых признаков по делениям шкал (от минимума до максимума), невысокий удельный вес нулевых значений признаков, отсутствие перекоса значений признаков (их концентрации в одном месте шкалы). С учетом ре­зультатов пилотажного исследования производится коррекция ин­струментария, после чего начинаются полевые работы.

В процессе подготовки и проведения социологического иссле­дования осуществляется ряд процедур. Прежде всего — концептуа­лизация проблемы, составляющей исходный пункт любого исследо­вания. Эта процедура включает в себя определение понятий, выра­жающих наиболее существенные аспекты изучаемой проблемы. Система понятий образует теорию — идеальную модель явления, дающую целостное представление о нем и объясняющую его внут­реннюю структуру, место в социальной реальности, причины воз­никновения и развития. Теория указывает на факты (реальные, эмпирически наблюдаемые события), относящиеся к данному яв­лению. На основе теорий выдвигаются гипотезы — неоднозначные предположения о связях между различными фактами, характеризу­ющих изучаемое явление. Гипотеза обязательно должна быть под­тверждена или опровергнута. Эмпирическое социологическое ис­следование можно рассматривать как процесс выдвижения и про­верки гипотез, опирающийся на сбор, анализ и обобщение фактов. Для выполнения этой задачи необходимо осуществить операциона-лизацию выработанных в процессе концептуализации понятий.

Операционализация означает процедуру, с помощью которой по­нятия переводятся в переменные. Переменные конструируются на основе выявления наблюдаемых и изменяющихся признаков поня­тия, благодаря этому их можно обнаруживать в реальном сознании и поведении людей и измерять. Полный перевод понятий в пере­менные (редукция) невозможен не только потому, что понятие включает ненаблюдаемые и неизмеряемые признаки явления, но и потому, что в процессе конструирования переменных мы подводим не понятия под их «эмпирические референты», а устойчивые структуры социального действия людей под понятия. Суть операционализации заключается в трансформации языка науки в язык

[33]

обыденный, используемый людьми в их повседневной жизни. По­нятие отражает качественные (неизменные) признаки явления. Переменные выражают не только качественные, но и количествен­ные (изменяющиеся) признаки, которые могут принимать различ­ные значения, воздействуя друг на друга. Переменные, которые оказывают это воздействие, называются независимыми (активны­ми), а переменные, подвергающиеся воздействию, — зависимыми (пассивными).

В научной литературе существует деление переменных на пока­затели и индикаторы. Последние рассматриваются как частичные проявления показателей. Операционализация в этом случае выгля­дит как перевод понятий в показатели, а показателей — в индика­торы, значения которых и измеряются непосредственно; Операци­онализация делает возможной следующую процедуру социологи­ческого исследования — квантификацию.

Благодаря квантификации мы можем представить в виде чисел выделенные нами в процессе концептуализации исходные качест­венные характеристики изучаемого явления и использовать совре­менные математические методы обработки и анализа информации. Однако в этом процессе возникает затруднение, связанное с тем, что по мере преобразования определенного качественного призна­ка понятия в некоторое множество переменных, мы должны одно­временно двигаться в обратном направлении, доказывая, что все сконструированные нами переменные отражают различные сторо­ны квантифицируемого нами определенного качественного при­знака понятия, а не какого-либо другого его признака. Как прави­ло, при квантификации множество качественных признаков поня­тия трансформируется в еще более обширное множество перемен­ных. Часто бывает трудно доказать, что измеренные переменные относятся к одному признаку, а не к нескольким. Качество опера-ционализации понятий в значительной степени зависит от точнос­ти и однозначности их рабочих определений, сформулированных в ходе концептуализации, которая позволяет выбрать из множества существующих в научной литературе трактовок понятий те, кото­рые в наибольшей степени соответствуют целям и задачам иссле­дования.

Выделение простейших качественных признаков делает возмож­ным их измерение. Это обусловлено единством качественной и ко­личественной определенности любого явления действительности: качество всегда связано с определенным количеством, а количест­во—с конкретным качеством. Поэтому в процессе дробления ка­чественных признаков появляются количественные. И наоборот, по мере углубления анализа количественных признаков обнаружи-

[34]

Ваются качественные признаки. Единство этих двух характеристик выражается понятием меры, которая устанавливает диапазон измерения количественных характеристик явления, за пределами которого оно теряет свою качественную определенность (переходит в другое качественное состояние).

[Измерение — это процедура, в рамках которой качественным оизнакам изучаемого явления приписываются определенные ко­личественные характеристики (значения). Оно осуществляется на номинальном, порядковом и интервальном уровнях^Методы сбора данных..., 82—90] с помощью шкал. Шкала (от лат. scala — лестни­ца) представляет собой вербальную (словесную) или числовую сис­тему фиксирующую взаимосвязанные значения признаков изучае­мого явления. Каждому уровню измерения соответствует шкала определенного типа, отличающегося способом количественного выражения соотношения качественных признаков.

На номинальном уровне фиксируется пронумерованный пере­чень качественных признаков изучаемого явления. Соответствую­щая данному уровню шкала (номинальная) дает нам классифика­цию этих признаков на основе их равенства или неравенства (сходства или различия). Сходным признакам приписываются оди­наковые значения, отличающимся — разные. Примером такой шкалы является перечень видов политического участия: 1 — выбо­ры, 2 — референдумы, 3 — собрания, 4 — митинги, 5 — демон­страции, 6 — марши протеста и т.д. В этом случае осуществляется простая фиксация использования или неиспользования населением того или иного вида участия. Измерение на рассматриваемом уров­не носит условный характер, поскольку оно не позволяет фикси­ровать количественное выражение определенных качественных признаков (в нашем примере — степень использования респонден­том каждой из форм участия). Здесь мы можем получить лишь общее косвенное представление об этом в результате подсчета час­тоты (в абсолютных величинах и процентах) упоминания перечис­ленных форм участия в нашей выборке.

В соответствии с этими частотами можно выстроить из всех форм участия некоторый последовательный ряд от максимума до минимума (проранжировать их). Только после такой предваритель­ной обработки становятся возможными следующие количествен-не операции: 1) определение моды, т.е. наиболее часто встречаю­щегося значения изучаемого признака; 2) построение таблиц со­пряженности (парных распределений) признаков; 3) вычисление в таблицах показателей парной связи признаков: критерия хи-квадрат, коэффициента сопряженности Пирсона (Р) и коэффици-Чупрова (7) [Рабочая книга социолога, 214—215; Энциклопе-

[35]

дический социологический словарь, 335]. Указанные коэффициен­ты равны нулю при полной независимости признаков и единице при полной их связи. С помощью данных операций можно обна­ружить наличие связи между качественными признаками изучае­мого явления. Например, можно выяснить влияние пола, возраста, профессии, социального положения, политической активности об­следуемых на их распределение по формам участия.

На порядковом уровне измерения, в отличие от номинального, устанавливается не просто перечень, но и иерархическая последо­вательность качественных признаков явления. Порядковая шкала позволяет фиксировать не только отношения «равенства — нера­венства», но и отношения «больше — меньше» между отдельными позициями. Такую шкалу используют, например, для определения степени удовлетворенности опрашиваемых результатами полити­ческого участия: 1 — совершенно не удовлетворен; 2 — скорее не удовлетворен, чем удовлетворен; 3 — в равной степени не удовле­творен и удовлетворен; 4 — скорее удовлетворен, чем не удовле­творен; 5 — полностью удовлетворен. Цифры, обозначающие ранги (ступени) перечисленных пунктов шкалы (1, 2, 3, 4, 5), как и в предыдущем случае, имеют условный характер, поскольку они указывают на очередность расположения, а не на интенсивность качественных признаков. Мы можем, не нарушая отношения по­рядка, заменить указанные выше значения симметричными: -2, - 1, О, +1, +2. Шкала этого уровня не позволяет фиксировать измене­ние значений изучаемого признака от минимума (или нуля) до максимума, так как она не имеет единицы измерения.

Порядковые шкалы позволяют осуществлять больше операций с числами, чем шкалы предыдущего типа. К перечисленным выше (для номинальных шкал) операциям прибавляются: 1 — определе­ние медианы (значения признака, расположенного в середине упо­рядоченного ряда); 2 — вычисление коэффициентов ранговой кор­реляции (взаимосвязи) признаков, т.е. коэффициентов Спирмена и Кендалла [Рабочая книга социолога, 208—211]. Величина этих ко­эффициентов может изменяться от +1 (при наличии строгой пря­мой зависимости между двумя рядами рангов) до - 1 (при наличии строгой обратной зависимости между двумя рядами рангов). При отсутствии зависимости они равны нулю. Эти коэффициенты ис­пользуются для определения наличия или отсутствия связи между двумя проранжированными рядами признаков. С их помощью можно, например, измерить зависимость между степенью удовле­творенности политическим участием и степенью доверия полити­ческим институтам по схеме: 1 — совсем не доверяю; 2 — больше не доверяю, чем доверяю; 3 — в равной степени не доверяю и до-

[36]

веряю, 4- больше доверяю, чем не доверяю; 5 — полностью до­
веряю, **

На интервальном уровне можно не только классифицировать и орядочивать качественные признаки, но и определять величину аленности одного их значения от другого. Шкалы этого уровня (интервальные) благодаря наличию стандартизованной единицы из­меряемого признака позволяют определять расстояние между от­дельными значениями этого признака, устанавливать насколько одно из них больше/меньше другого. Такие шкалы используются для измерения интереса к политической информации (продолжи­тельности просмотра политических телепрограмм; числа полити­ческих изданий в домашней библиотеке и т.д.), политической ак­тивности (частоты участия в политических мероприятиях; времени, затрачиваемого на политическую работу, и др.).

В социологии существуют методы, с помощью которых можно сконструировать интервальную шкалу [Рабочая книга социолога, 217-225]. Среди них наиболее распространен метод Тёрстоуна [Мангейм и Рич, 262—265; Рабочая книга социолога, 219—222]. Его можно использовать для измерения политических установок. Сна­чала составляется пронумерованный список кратких и недвусмыс­ленных суждений (от 100 до 200), взятых из различных политичес­ких текстов, уже проведенных исследований или придуманных самостоятельно. Указанные суждения должны выражать установку по отношению к определенному объекту (например, к правитель­ству) и выписываться на отдельные карточки. Затем отбираются эксперты (более 50 человек), которые должны сами разработать шкалу, необходимую для измерения установки обследуемой нами группы. Каждому эксперту дается полный перемешанный набор таких карточек. Эксперты оценивают (одобряют или отвергают) отобранные суждения и присваивают каждому из них определен­ный балл.

Каждый эксперт оценивает предложенные ему суждения по 11-балльной шкале: 1 — сильное отрицание; 2 — не очень сильное отрицание; 3 — умеренное отрицание; 4 — слабое отрицание; 5 — очень слабое отрицание; 6 — нейтральное отношение; 7 — очень слабое одобрение; 8 — слабое одобрение; 9 — умеренное одобре­ние; Ю — сильное одобрение; 11 — очень сильное одобрение, кспертам должно казаться, что интервалы между этими градациями равны. В процессе оценивания суждений эксперт раскладывает их по стопкам, соответствующим вышеперечисленным градациям, отмечает в списке суждений номер стопки, в которую он помещает каждое суждение. После завершения сортировки карточек и экспертами каждому суждению приписывается обобщенная

[37]

балльная оценка. Затем из всей совокупности суждений исключа­ются те, которые получили сильно расходящиеся оценки. В итоге остается (в списке и на карточках) 15—20 суждений, получивших сходную оценку экспертов. Эти суждения используются в массо­вом опросе.

В ходе интервью каждому респонденту предлагают отобрать из прошедших экспертную оценку суждений два-три, с которыми он согласен. Затем для отобранных респондентом суждений определя­ется медианное значение, которое и становится баллом этого рес­пондента по изучаемой установке. Разброс ответов респондента по отдаленным друг от друга позициям шкалы свидетельствует о не­определенности его отношения к изучаемому объекту или об отли­чии его отношения от того, которое сформулировано в предложен­ных ему суждениях. Концентрация ответов в смежных позициях шкалы говорит об однозначности отношения и о надежности самой шкалы.

Частным случаем данной шкалы является «истинная» интер­вальная шкала [Мангейм и Рич, 85], или шкала отношений [Соци­ология. Основы общей теории, 433], которая имеет не только еди­ницу измерения, но и точку отсчета. Эта шкала позволяет опреде­лять, во сколько раз одно из значений изучаемого признака боль­ше/меньше другого. С помощью такой шкалы обычно фиксируют­ся возраст, доход, стаж работы и т.д.

Шкалы интервального уровня измерения допускают, помимо упомянутых на номинальном и порядковом уровнях, следующие операции с числами: 1) расчет средней арифметической; 2) опре­деление дисперсии признака (рассеяния значений признака во­круг средней); 3) вычисление коэффициента парной корреляции Пирсона (г). Последний позволяет измерять направление и ин­тенсивность взаимосвязи двух интервальных признаков в случае наличия между ними линейной зависимости. Его величина изме­няется от - 1 до +1 [Мангейм и Рич, 426—430; Рабочая книга со­циолога, 198].

В реальной практике социологических исследований встречают­ся переходные варианты шкал. В качестве примера можно привес­ти девятибалльную шкалу, применяемую в отечественной социоло­гии при проведении экспертных оценок [Сближение рабочего класса и инженерно-технической интеллигенции социалистических стран. Т.З. Прага, 1985. С. 100—101]. Подобные шкалы можно ис­пользовать для экспертной оценки влиятельности политических институтов:

Пример. Оцените, пожалуйста, с помощью нижеприведенной девяти­балльной шкалы степень влияния различных политических институтов на

[38]

политику нашего государства». Позиция 1 шкалы означает полное отсутствие влияния, позиция 9 — определяющее влияние. Отметьте, пожалуйста, позицию, соответствующую Вашему мнению.

Измерение величины значений признаков здесь основано на допуще­нии что эксперты (ведущие политологи и политики) способны непосред­ственно производить количественную оценку параметров изучаемого явле­ния. Считается, что в подобных шкалах должно быть не более 11 пози­ций.

Не менее важной процедурой является репрезентация объекта исследования (построение выборки). Все люди, подлежащие изуче­нию в соответствии с выделенными переменными, называются ге­неральной совокупностью. Специально отобранная их часть, воспро­изводящая в уменьшенном масштабе генеральную совокупность, составляет выборочную совокупность. В идеальном случае распреде­ление выделенных признаков в обеих совокупностях должно со­впадать. Это позволяет распространять на генеральную совокуп­ность выводы, полученные на основе изучения выборочной сово­купности.

Соответствие выборочной и генеральной совокупностей называ­ется репрезентативностью (представительностью). Обычно выборка считается репрезентативной, если по значениям основных пере­менных она отличается от генеральной совокупности не более, чем на ±5%. В практике социологических исследований часто наблю­дается «смещение» выборки — превышение 5%-ного барьера. В этом случае делается «перевзвешивание» (ремонт) выборки с целью ликвидации указанного превышения. Например, если соотношение мужчин и женщин в генеральной совокупности составляет 55/45%, а в выборочной совокупности обнаружено противоположное соот­ношение, т.е. 45/55%, то мы должны изъять из полученного мас­сива данных необходимое число ответов респондентов-женщин.

Обычно репрезентация объекта исследования осуществляется по аким признакам, как пол, возраст, образование, род занятий, место жительства (тип поселения) и др. Выборка, построенная на основе соответствующих генеральной совокупности значений пере-

[39]

численных выше переменных, называется квотной. В этом случае представители различных социально-демографических групп отби­раются сообразно их удельному весу среди населения. Каждый со­циолог, участвующий в обследовании, получает квотное задание и находит респондентов с соответствующими ему характеристиками. Такую выборку можно построить в том случае, если имеются ста­тистические данные о контролируемых нами признаках генераль­ной совокупности (как правило, число этих признаков не превы­шает четырех: пол, возраст, образование, род занятий).

Если же у нас нет необходимых статистических данных, то мы можем построить случайную выборку. Случайная выборка обычно создается на основе систематического отбора необходимого коли­чества опрашиваемых из генеральной совокупности, например из списка избирателей. Первый респондент выбирается с помощью таблицы случайных чисел [Капитонов, 421—428; Мангейм и Рич, 514—516; Статистические методы анализа информации..., 305—308], а остальные — в соответствии с определенным интервалом (шагом). Можно действовать иначе; сначала с помощью таблицы случайных чисел отобрать избирательные участки, а затем на каж­дом из них отобрать номера телефонов избирателей. В обоих слу­чаях у каждого избирателя будет равная вероятность попадания в выборку. Например, если в нашем городе имеется 1800 избира­тельных участков и нам нужно опросить 1200 человек, то мы можем отобрать 100 участков и на каждом из них отобрать по 12 абонентов.

В практике массовых опросов, проводимых Институтом Гэлла-па, применялись две схемы построения выборки: социальная и по­литическая. Социальная выборка основана на данных переписи всего населения, политическая — на списках избирателей [Петров­ская, 67—72]. Первая схема использовалась для изучения потреб­ности в товарах, уровня жизни, распределения доходов, пособий и пр., вторая — для изучения отношения к кандидатам, партиям, должностным лицам и т.д. Социальная выборка формировалась двумя способами: случайным и стратифицированным. При про­стом случайном способе люди отбираются для опроса из алфавит­ного перечня всего населения. Это позволяет получить общее представление о состоянии дел. При стратификационном отборе все население делится на однородные группы (по образованию, профессии и т.д.), внутри которых проводится случайный отбор. Политическая выборка должна учитывать факторы, влияющие на участие в голосовании (тип кампании, место жительства, уровень дохода, возраст и др.). При ее построении сначала составляется классификация населенных пунктов, затем из каждого их вида произвольно отбираются поселения пропорционально удельному

[40]

весу этого вида. В этих поселениях выбираются административные районы, а в последних — избирательные участки. В первом вари­анте выборки единицей обследования является семья, во втором — избирательный участок. На участках делается выборка домов, в каждом из которых опрашивается один избиратель.

Одним из основных вопросов социологического исследования является определение объема выборки (числа единиц наблюдения). Дж. Мангейм и Р. Рич в связи с этим пишут: «В большинстве наи­более значительных исследовательских проектов в области полито­логии используются выборки объемом приблизительно 1400—1600 респондентов. Такие исследования дают результаты с точностью 3-4% и со степенью уверенности 0,99 считаются одновременно и возможными, и достаточно точными» [Мангейм и Рич, 180]. Одна­ко в ряде случаев опрашивается большее число респондентов. Такие известные социологические центры, как Институт Гэллапа и Институт социологии РАН, на общегосударственном уровне чаще всего используют выборку объемом от 1500 до 2000 человек [Давы­дов АЛ Объем выборки // Социологические исследования. 1988. № 6. С. 84; Трансформация социальной структуры и стратифика­ция российского общества. М., 1996. С. 49]. Это вызвано необхо­димостью повьпиения точности измерения (зачастую кандидаты в депутаты побеждают на выборах с перевесом от 1 до 2%). Объем выборки рассчитывается в каждом конкретном исследовательском проекте. В то же время в различных странах существуют опреде­ленные, установленные на основе опыта исследований модели вы­борок.

После завершения разработки программы и проверки инстру­ментария начинается полевой этап исследования, в рамках кото­рого собираются и кодируются эмпирические данные. При коди­ровке каждой позиции используемой нами формы сбора данных присваивается определенный номер в порядке нарастания. Нуме­руются лишь альтернативы возможных ответов на вопросы. Полу­ченные таким образом коды являются условными числами, однако только в такой форме фактическая информация может быть вве­дена в компьютер. В стандартной для современной социологии системе прикладных программ (8Р88) закодированная информа­ция обычно вводится в режиме электронной таблицы, столбцы которой обозначают номера вопросов (у), а строки — номера рес­пондентов. На пересечении строк и столбцов записываются коды ЭДьтернатив, отмеченных респондентами при ответе на вопросы анкеты, например:

[41]

  VI V2 V3 V4 v5 v6 v7 v8 v9 v10 V11 v12 v13
*

Аналитический этап включает ввод, статистическую обработку закодированной информации, обобщение и интерпретацию полу­ченных данных.

На основе анализа осуществляется интерпретация данных. На этом этапе мы должны перейти от количественного (статистичес­кого) анализа данных к качественному (содержательному), пере­вести язык цифр на обычный язык. В то же время мы должны осуществить процедуру, обратную операционализации: перейти с обыденного языка, с помощью которого мы трансформировали ис­ходные понятия в переменные и собирали первичную информа­цию, на язык науки, с помощью которого мы концептуализирова­ли изучаемое политическое явление в начале исследования. Суть интерпретации собранного и обработанного нами фактического материала заключается в истолковании смысла обнаруженных на уровне эмпирического анализа структур повседневной политичес­кой жизни людей.

В заключение данного параграфа следует отметить, что изло­женная в нем технология социологического исследования в основ­ном относится к так называемым «жестким» (количественным) ме­тодам сбора и анализа эмпирических данных. Технология приме­нения «мягких» (качественных) методов описана в ряде учебных пособий [см., например: Белановский, 280—335; Социология. Ос­новы общей теории, 415—423; Ядов (в сотрудничестве с В.В. Семе­новой), 1998, 387—450]. В систематической форме эта технология изложена в учебном пособии [Семенова, 1998]. -—Принципиальное различие между технологиями количественно­го и качественного социологического исследования заключается в том, что количественное исследование основано на измерении параметров социального действия, а качественное — на понима­нии смысла этого действия. Поэтому в первом случае для получе­ния результатов необходимо провести статистически значимое множество наблюдений за массовым сознанием и поведением людей, а во втором случае достаточно одного или нескольких на­блюдений за сознанием и поведением небольшой группы людей или даже отдельного человека. Качественные методы: включенное наблюдение, анализ биографии, глубинное интервью, фокус-груп­па [Семенова, 102—114] позволяют социологу включиться в про-

[42]

цесс повседневной жизни изучаемых им людей и понять мотива­цию их поведения ДЭта особенность качественных методов делает Ненужными те процедуры технологии социологического исследова­ния, которые связаны с квантификацией и репрезентацией харак­теристик объекта исследования, а также со статистической обра­боткой его результатов.

В.В. Семенова выделяет следующие особенности технологии ка­чественного исследования [Там же, 127]:

1. Гипотезы формулируются на заключительном этапе анализа данных, а не до начала сбора, как в количественном исследовании.

2. Инструментарий создается в ходе полевой, а не подготови­тельной части исследования.

3. Результаты исследования представлены в виде текстов (вы­сказывания, фрагменты документов, транскрипты), а не цифр (ста­тистические распределения, шкальные значения, коэффициенты).

4. Теоретические конструкции являются преимущественно ин­дуктивными, а не каузальными.

5. Исследовательские процедуры индивидуальны и не стандар­тизированы.

6. Анализ данных имеет содержательный (выделение тем, обоб­щение идей), а не статистический характер (расчет распределения признаков, построение статистических таблиц, выявление зависи­мостей между признаками).

В качественных исследованиях не проводится репрезентация объекта. Выборка здесь строится на основе не отражения структу­ры обследуемой совокупности людей, а отбора типичных предста­вителей изучаемых социальных категорий.* Поэтому качественное исследование воспроизводит не статистическую картину (структуру и результаты) изучаемого социального действия, а смысл, который вкладывают в него его участники.

В целом можно сказать, что основные этапы (подготовитель­ный, полевой, аналитический) сохраняются в обоих типах исследо­вания, однако их соотношение и роль отличаются. В качественном исследовании полевой этап приобретает центральное значение, по­скольку во время сбора информации пересматриваются результаты предварительной концептуализации и операционализации изучае­мого явления, а также начинается анализ этой информации. Соци­олог здесь совмещает функции полевика и аналитика. На подгото­вительном этапе качественного исследования также разрабатывает­ся программа, в которой формулируются его цель, задачи, объект и предмет, обосновывается выборка и инструментарий: вопросы, на которые предстоит найти ответы в ходе индивидуального и

[43]

группового интервью, наблюдения или изучения документов [Се­менова, 125-134, Дмитриева, 42-60].

На основе сказанного можно сделать вывод о том, что главное отличие качественных исследований от количественных заключа­ется в менее «жесткой» регламентации всех процедур, а также в более активном использовании коммуникативных элементов само­го социологического знания. Живое общение с людьми зачастую дает информацию, позволяющую объяснить парадоксальные ре­зультаты исследований, полученные на основе строгого соблюде­ния всех требований статистики. Например, в ходе опросов, про­веденных в апреле — июне 1996 г. Центром эмпирических поли­тических исследований философского факультета СПбГУ (ЦЭПИ СПбГУ), было установлено, что значительная часть избирателей Санкт-Петербурга, считающих политические взгляды Явлинского близкими своим собственным и доверяющих ему, намерена голо­совать на президентских выборах не за него, а за Ельцина (что и произошло в первом туре голосования). Статистические методы не могли дать ответ на вопрос о том, почему в таком «яблочном» в то время городе, как Санкт-Петербург (на парламентских выбо­рах 1995 г. списки «Яблока» получили наибольшее число голосов во всех избирательных округах), Явлинский не смог получить полную поддержку сторонников своей партии. Прояснить ситуа­цию помогло фокусированное интервью с одним из этих сторон­ников. Суть мотивации его поведения на выборах можно резюми­ровать формулой: «Я бы проголосовал за Явлинского, но боюсь Зюганова, и поэтому буду голосовать за Ельцина». Этот пример еще раз убеждает в необходимости комплексного использования количественных и качественных методов социологического иссле­дования, о чем говорится в упомянутой выше статье Карла ван Метера (см. гл. 1).


Сейчас читают про: