Элементарная теория деления

В 1939 г. Н. Бор и Дж.Уилер, а также Я. Френкель еще задолго до того, как деление было всесторонне изучено экспериментально, предложили теорию этого процесса, основанную на представлении о ядре как о капле заряженной жидкости.

Энергия, освобождающаяся при делении, может быть получена непосредственно из формулы Вайцзеккера.

Eсв(A,Z) = a1A - a2A2/3 - a3Z2/A1/3 - a4(A/2 - Z)2/A + a5A-3/4. f.1

Предположим, что ядро с массовым числом А1и зарядом Z1 делится на два одинаковых осколка с массовыми числами А2 = А1/2 и атомными номерами Z2 = Z1/2. Энергия E, освобождающаяся при делении, определяется соотношением

E = 2Eсв(A2,Z2) - Eсв(A1,Z1). f.2

Рассчитаем величину энергии, выделяющнйся при делении тяжелого ядра. Подставим в (f.2) выражения для энергий связи ядер (f.1), полагая А1=240 и Z1 = 90. Пренебрегая последним членом в (f.1) вследствие его малости и подставив значения параметров a2 и a3,получаем

f.3

При делении изменяются поверхностная энергия Еп = а2А2/3 и кулоновская энергия Eк = aзZ2/A1/3, причем поверхностная энергия в данном примере увеличивается на 180 МэВ, а кулоновская энергия уменьшается, на 340 МэВ. Деление возможно в том случае, когда Е > 0. Используя соотношение (f.3), запишем

 

Отсюда получим, что деление энергетически выгодно, когда Z2/A > 17. Величина Z2/A называется параметром делимости. Энергия Е, освобождающаяся при делении, растет с увеличением Z2/A; Z2/A = 17 для ядер в районе иттрия и циркония. Из полученных оценок видно, что деление энергетически выгодно для всех ядер с A > 90. Почему же большинство ядер устойчиво по отношению к самопроизвольному делению? Чтобы ответить на этот вопрос, посмотрим, как меняется форма ядра в процессе деления.

Рис.2. Изменение формы ядра в процессе деления

В процессе деления ядро последовательно проходит черезследующие стадии (рис.2): шар, эллипсоид, гантель, два грушевидных осколка, два сферических осколка. Как меняется потенциальная энергия ядра на различных стадиях деления? После того как деление произошло, и осколки находятся друг от друга на расстоянии, много большем их радиуса, потенциальную энергию осколков, определяемую кулоновским взаимодействием между ними, можно считать равной нулю.

Рис.3. Изменение поверхностной и кулоновской энергий в процессе деления Рис.4. Изменение потенциальной энергии ядра в процессе деления

Рассмотрим начальную стадию деления, когда ядро с увеличением r принимает форму все более вытянутого эллипсоида вращения. На этой стадии деления r - мера отклонения ядра от сферической формы (рис.3). Вследствие эволюции формы ядра изменение его потенциальной энергии определяется изменением суммы поверхностной и кулоновской энергий Е'п + Е'к. Предполагается, что объем ядра в процессе деформации остается неизменным. Поверхностная энергия Е'п при этом возрастает, так как увеличивается площадь поверхности ядра. Кулоновская энергия Е'куменьшается, так как увеличивается среднее расстояние между нуклонами. Пусть сферическое ядро в результате незначительной деформации, характеризующейся малым параметром , приняло форму аксиально-симметричного эллипсоида. Можно показать, что поверхностная энергия Е'п и кулоновская энергия Е'к в зависимости от меняются следующим образом:

f.4

где Еп и Ек - поверхностная и кулоновская энергии сферического ядра. Сумма поверхностной и кулоновской энергий, определяющая изменение потенциальной энергии ядра, равна

Е'п + Е'к Еп + Ек + 2(2 Еп - Ек)/5. f.5

В случае малых эллипсоидальных деформаций рост поверхностной энергии происходит быстрее, чем уменьшение кулоновской энергии.

В области тяжелых ядер 2Еп > Ек сумма поверхностной и кулоновской энергий увеличивается с увеличением . Из (f.4) и (f.5) следует, что при малых эллипсоидальных деформациях рост поверхностной энергии препятствует дальнейшему изменению формы ядра, а, следовательно, и делению. Выражение (f.5) справедливо для малых значений (малых деформаций). Если деформация настолько велика, что ядро принимает форму гантели, то силы поверхностного натяжения, как и кулоновские силы, стремятся разделить ядро и придать осколкам шарообразную форму. На этой стадии деления увеличение деформации сопровождается уменьшением как кулоновской, так и поверхностной энергии. Т.е. при постепенном увеличении деформации ядра его потенциальная энергия проходит через максимум. Теперь r имеет смысл расстояния между центрами будущих осколков. При удалении осколков друг от друга, потенциальная энергия их взаимодействия будет уменьшатся, так как уменьшается энергия кулоновского отталкивания Ек. Зависимость потенциальной энергии от расстояния между осколками показана на рис. 4. Нулевой уровень потенциальной энергии соответствует сумме поверхностной и кулоновской энергий двух невзаимодействующих осколков.

Наличие потенциального барьера препятствует мгновенному самопроизвольному делению ядер. Для того чтобы ядро мгновенно разделилось, ему необходимо сообщить энергию Q, превышающую высоту барьера Н. Максимум потенциальной энергии делящегося ядра примерно равен е2Z2/(R1+R2), где R1 и R2 - радиусы осколков. Например, при делении ядра золота на два одинаковых осколка е2Z2/(R1+R2) = 173 МэВ, а величина энергии Е, освобождающейся при делении (см. формулу (f.2)), равна 132 МэВ. Таким образом, при делении ядра золота необходимо преодолеть потенциальный барьер высотой около 40 Мэв.

Высота барьера Н тем больше, чем меньше отношение кулоновской и поверхностной энергии Екп в начальном ядре. Это отношение, в свою очередь, увеличивается с увеличением параметра делимости Z2/А (см. (f.4)). Чем тяжелее ядро, тем меньше высота барьера Н, так как параметр делимости увеличивается с ростом массового числа:

Екп = (a3Z2)/(a2A) ~ A. f.6

Таким образом, более тяжелым ядрам, как правило, нужно сообщить меньшую энергию, чтобы вызвать деление.

Высота барьера деления обращается в нуль при 2Еп - Ек = 0 (см. (f.5)). В этом случае

пк = 2a2A/(a3Z2) =1,

откуда

Т.е. согласно капельной модели в природе должны отсутствовать ядра с Z2/А > 49, так как они практически мгновенно (за характерное ядерное время порядка 10-22 с) самопроизвольно делятся. Существование атомных ядер с с Z2/А > 49 ("остров стабильности") объясняется оболочечной структурой. Зависимость формы, высоты потенциального барьера H и энергии деления E от величины параметра делимости Z2/А показана на рис. 5.

Рис.5. Зависимость формы, высоты потенциального барьера H и энергии деления E от величины параметра делимости Z2

Самопроизвольное деление ядер с Z2/А < 49, для которых высота барьера Н не равна нулю, с точки зрения классической физики невозможно. С точки зрения квантовой механики такое деление возможно в результате прохождения через потенциальный барьер и носит название спонтанного деления. Вероятность спонтанного деления растет с увеличением параметра делимости Z2/А, т.е. с уменьшением высоты барьера. В целом период полураспада относительно спонтанного деления уменьшается при переходе от менее тяжелых ядер к более тяжелым от Т1/2 > 1021 лет для 232Th до 0.3 с для 260Кu. Вынужденное деление ядер с Z2/А< 49 может быть вызвано любыми частицами: фотонами, нейтронами, протонами, дейтронами, -частицами и т.д., если энергия, которую они вносят в ядро достаточна для преодоления барьера деления.

Цепна́я я́дерная реа́кция — последовательность единичных ядерных реакций, каждая из которых вызывается частицей, появившейся как продукт реакции на предыдущем шаге последовательности. Примером цепной ядерной реакции является цепная реакция деления ядер тяжёлых элементов, при которой основное число актов деления инициируется нейтронами, полученными при делении ядер в предыдущем поколении.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: