Последовательность расчетов

1.2.1 Выбор груза и схемы охлаждения груза

Выбор груза производиться по заданной температуре воздуха в трюме Θ0и по даннымтаблицы А1 приложения А.

Выбор системы охлаждения трюма связан с типом применяемого хладагента, температуры воздуха в трюме и рода перевозимого груза. Рекомендации по этому вопросу даны в [1].

Схему холодильной установки и систему охлаждения трюма следует изобразить в произвольном масштабе на листе формата А4 с описанием устройства и работы.

1.2.2 Определение потребной холодопроизводительности установки

Расчет потребой холодопроизводительности установки производиться по отдельным статьям расхода холода на компенсацию различных теплопритоков.

Конвективные теплопритоки через ограждающие конструкции , Вт, определяются по формуле

При этом для упрощения предполагается, что температура надводного и подводного бортов считается равной температуре наружного воздуха, температура днища принимается равной температуре забортной воды, и теплопритоки через пиллерсы, периметры промежуточных переборок и прочие тепловые мостики не учитываются.

Теплопритоки от солнечного излучения , , подсчитываются по формуле

,

где – площадь палубы, облучаемая солнцем, ;

0С – повышение температуры палубы за счет солнечного излучения.

Теплопритоки , ,от поступающего груза, который за время погрузки нагревается на 1 – 3 0С, (если перевозятся овощи или фрукты, то ) определяется по формуле

,

где – масса груза, ;

– масса груза с тарой в трюме, ;

– объём трюма, ;

– масса тары, ;

– удельный погрузочный объем, , определяется по таблице А1;

– удельная теплоемкость груза, , определяется по таблице А3

– удельная теплоемкость тары;

– время охлаждения груза в часах, принимается из соображения, что за 18 часов можно охладить груз на 1 0С. Если в качестве перевозимого груза выбраны овощи или фрукты, то время охлаждения может быть равно продолжительности рейса судна. (1–4 суток).

Теплопритоки с наружным воздухом, поступающим в трюм при вентиляционном обмене , , определяется по формуле

,

где – число обменов воздуха в сутки, определяется по таблице А1;

– плотность воздуха в трюме, ;

– соответственно, удельные энтальпии наружного воздуха и воздуха, находящегося в трюме, .

Плотность воздуха и удельные энтальпии воздуха определяются по диаграмме h-d при известных значениях температуры и влажности наружного и трюмного воздуха. Относительная влажность воздуха в трюме принимается из таблицы А1.

Теплопритоки от работающих механизмов , , принимаются по приближенной формуле

где большее значение относится к воздушной системе охлаждения, а меньшее – к рассольной и непосредственной.

Теплота, выделяемая фруктами и овощами в процессе хранения , , определяется по эмпирической формуле

Расчетная холодопроизводительность установки , , определяется с учетом коэффициента запаса и коэффициента рабочего времени ,который принимается равным 1 для судов с объёмом трюмов более 300 и 0,75 – для судов с объёмом трюмов менее300

.

1.2.3 Расчет и построение цикла холодильной машины

Расчет выполняется на основании выбранной схемы охлаждения, типа хладагента и исходных условий охлаждения трюма. По заданной температуре забортной воды и температуре воздуха в трюме определяются (см. рисунок 1.1):

Температура конденсации хладагента (процесс 2/ – 3/)

0C;

Температура жидкого хладагента на выходе из конденсатора (процесс переохлаждения в конденсаторе 3/ –3)

0C;

Температура кипения хладагента в испарителе (процесс 4 – 1/)

,

где при рассольной системе охлаждения,

при воздушной системе охлаждения;

Температура всасываемого компрессором пара

где 0C – для машин без регенеративных теплообменников,

В расчете цикла принимается, что из испарителя выходит сухой насыщенный пар, и его перегрев (процесс 1/ – 1) у аммиачных машин осуществляется во всасывающем трубопроводе за счет теплоты окружающей среды, а у хладоновых машин – дополнительно в регенеративном теплообменнике (процесс 1 – 1р). Для построения теоретического цикла холодильной парокомпрессорной машины без регенерации (1234 на рисунке 1.1) предварительно определяются: давление конденсации по температуре конденсации, давление кипения по температуре кипения. Затем по диаграмме наносятся вспомогательные линии 2/ – 3/ и 1/ – 5, соответствующие процессам конденсации и кипения. Положение точки 1, определяющей состояние пара перед сжатием его в компрессоре, находится на пересечении изобары с изотермой . Положение точки 2, характеризующей состояние пара в конце процесса сжатия, определяется при пересечении изобары с адиабатой, выходящей из точки 1.

Точка 3, определяющая состояние жидкого хладагента после переохлаждения, находится при пересечении изобары с изотермой .

Процесс дросселирования в диаграмме изображается вертикальной линией 3 – 4, что позволяет определить состояние хладагента на выходе из дроссельного устройства (точка 4).

Рисунок 1.1 – Расчетный цикл парокомпрессорной машины

Для цикла с регенерацией 1р2р3р4р положение точки 1 определяется по рекомендуемой температуре , на 1 – 3 0C превышающей температуру кипения, и давлению . Точка 1р находится по тому же давлению и температуре , которая на 10-30 0C больше температуры пара . Точка 2р находится в пересечении адиабаты, выходящей из точки 1р с изобарой .

Для определения положения точки 3р следует решить равенство

,

где значения удельных энтальпий определяются по диаграмме, и затем найти точку пересечения изоэнтальпы с изобарой .Точка 4р определяется в пересечении вертикали, исходящей из точки 3р с изобарой .

Цикл холодильной машины изображается на ксерокопии диаграммы или на скалькированной копии. Основные параметры в характерных точках цикла заносятся в таблицу, которая дана ниже.

Таблица 1.3 – Параметры хладагента в характерных точках цикла

Расчетные точки цикла ,0С , , ,
1/        
         
1p        
2/        
         
2p        
3/        
         
3p        
         
4p        

1.2.4 Тепловой расчет компрессора

На основании данных расчета цикла парокомпрессорной холодильной машины определяются следующие величины

Удельная массовая холодопроизводительность , , для холодильной машины без регенеративного теплообменника

;

для холодильной машины с регенеративным теплообменником

.

Удельная объемная холодопроизводительность , , для холодильной машины без регенеративного теплообменника

;

для холодильной машины с регенеративным теплообменником

;

теоретический холодильный коэффициент для холодильной машины без регенеративного теплообменника

;

теоретический холодильный коэффициент для холодильной машины с регенеративным теплообменником

.

Входящие в вышеприведенные формулы значения энтальпий и удельного объема пара принимаются из таблицы 1.3 для соответствующих точек цикла.

Параметры выпускаемых промышленностью компрессоров приведены к так называемым стандартным условиям, которые различны для разных хладагентов и приводятся в таблице А4. Холодопроизводительность компрессора , , приведенная к стандартным условиям, определяется по формуле

,

– расчетная холодопроизводительность установки, ;

– удельная объемная холодопроизводительность хладагента в стандартном цикле, ;

– Коэффициент подачи в расчетном си стандартном циклах.

Коэффициент подачи рассчитывается по формулам:

для расчетного цикла

;

для стандартного цикла

,

где – относительная величина вредного пространства,

– давление конденсации и давление кипения для стандартного цикла парокомпрессорной машины.

Для определения числовых значений стандартных параметров по данным таблицы А4 на диаграмме изображается стандартный цикл.

Выбор компрессора производится по величине .

Для определение мощности приводного электродвигателя в случае, когда он не поставляется вместе с компрессором, вначале рассчитывается, индикаторная мощность, , по формулам:

для цикла без регенеративного теплообменника

,

для цикла с регенеративным теплообменником

.

Здесь значения удельных энтальпий принимаются по результатам расчета цикла из таблицы 1.3, индикаторный КПД принимается равным коэффициенту подачи , а массовая производительность компрессора , , определяется по формуле

.

Эффективная мощность компрессора складывается из индикаторной и мощности трения , , которую можно определить по формуле

,

где , – часовой объём, описываемый поршнями компрессора, а – среднее условное давление трения, которое принимается равным для аммиачных машин и для хладоновых машин.

Мощность электродвигателя принимается на % больше расчетной эффективной мощности.

Действительный холодильный коэффициент мошины определяется по формуле

.

1.2.5 Расчет воздухоохладителя

Теплопередающая поверхность ребристого воздухоохладителя , , определяется по формуле

,

где - коэффициент запаса;

− коэффициент теплопередачи для воздухоохладителей с принудительным движением воздуха поперек ребристых труб с коэффициентом оребрения от 6 до 24 /2/;

− среднелагорифмический температурный напор, ;

где 0С – температура на выходе из воздухоохладителя.

Производительность вентилятора, обдувающего воздухоохладитель , , рассчитывается по формуле

,

где − плотность воздуха в трюме, ;

− удельная энтальпия воздуха перед воздухоохладителем, , определяется по диаграмме при температуре и относительной влажности воздуха в трюме.

Удельная энтальпия воздуха на выходе из воздухоохладителя определяется следующим образом: точка, характеризующая параметры воздуха после воздухоохладителя лежит на диаграмме в месте пересечения изотермы с линией процесса тепловлажностной обработки воздуха, проходящей через начальную точку, характеризуемую параметрами и точку, лежащую на кривой , и имеющую температуру стенки воздухоохладителя, которая принимается на 3 выше температуры кипения хладона .

1.2.6 Расчет конденсатора

В судовых холодильных машинах применяются горизонтальные кожухотрубные конденсаторы, которые выбираются по потребной поверхности теплообмена , , рассчитываемой по формуле

где − коэффициент теплопередачи для аммиачных конденсаторов;

− коэффициент теплопередачи для хладоновых конденсаторов;

− коэффициент запаса;

− температурный напор;

− температура воды на входе в конденсатор (температура забортной воды);

− температура воды на выходе из конденсатора, ;

Расход воды через конденсатор , , определяется по формуле

,

где − теплоемкость воды;

- плотность забортной воды.

1.2.7 Расчет рассольного испарителя

Теплопередающая поверхность рассольного испарителя , , рассчитываются по формуле

,

где − коэффициент теплопередачи для хладоновых кожухотрубных испарителей;

− коэффициент теплопередачи для аммиачных испарителей;

− коэффициент запаса;

− температурный напор, ;

− температура промежуточного теплоносителя на выходе из испарителя;

− температура промежуточного теплоносителя на входе в испаритель.

Производительность рассольного насоса , , определяется по формуле

,

где - теплоемкость и плотность промежуточного теплоносителя, определяемая по таблице А2.

1.2.8 Определение поверхности теплообмена рассольных батарей

Необходимая поверхность рассольных батарей, устанавливаемых в охлаждаемом трюме , , определяется по формуле

,

где − коэффициент теплопередачи от воздуха к промежуточному теплоносителю для гладкотрубных батарей;

− средняя разность температур воздуха в трюме и промежуточного теплоносителя в батареях.

1.2.9 Расчет регенеративного теплообменника

Требуемая поверхность регенеративного теплообменника , , находится по формуле

,

где − тепловая нагрузка регенеративного теплообменника, ,

− коэффициент теплопередачи,

− коэффициент запаса;

− температурный напор, .

1.2.10 Выбор оборудования

В таблице Б1 и Б2 приведены данные по укомплектованным холодильным машинам. При выборе машины в первую очередь ориентируются на холодопроизводительность, величина которой у выбранной машины должна быть не менее расчетной (приведенной к стандартным условиям). Расчетные поверхности теплообменников (испарителей, конденсаторов и регенераторов) также должны быть не меньше, чем у агрегатов выбранной машины. Если среди холодильных машин, представленных в таблицах Б1 и Б2, не окажется машины, удовлетворяющей расчетным данным, производится комплектация машины из отдельных агрегатов. С этой целью для воздушной системы охлаждения трюма выбираются:

− компрессорно-конденсаторный агрегат (из таблицы Б4);

− насос водяного охлаждения конденсатора (из таблицы Б3);

− воздухоохладитель (из таблицы Б5);

− регенеративный теплообменник (из таблицы Б8);

Для системы с промежуточным хладоносителем выбираются:

− компрессорно-конденсаторный агрегат;

− насос водяного охлаждения конденсатора;

− испаритель рассольный (из таблиц Б6 и Б7);

− насосы рассольные (из таблицы Б3);

− батареи рассольные (из таблицы Б9);

− регенеративный теплообменник (для хладонов R-12 и R-22).

По правилам Речного Регистра при объеме трюма более 300 м3 и круглосуточной работе СХУ должно быть предусмотрено резервное оборудование, состоящее из одного компрессора с приводным двигателем, одного конденсатора, системы управления и всей аппаратуры, необходимой для обеспечения независимой работы всех устройств этого оборудования.

В режиме охлаждения плодоовощной продукции допускается допускается непрерывная работа всего оборудования, включая резервное.

На судах с вместимостью трюмов менее 300 м3 допускается СХУ без резервного оборудования, если расчетная продолжительность работы СХУ в сутки не превышает 18 часов.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: