Два концептуальных затруднения

Каким образом подобная технология должна работать? Не будем пока вдаваться в сугубо инженерные детали. Только представьте себе на мгновение, что существует возможность отслеживать активность нейронов вашего головного мозга, а соответствующее устройство расположено в вашем же теле. Включите в воображаемую картину и то, что технология, о которой мы говорим, способна контролировать активность ваших нейронов, побуждая вас думать, чувствовать или приобретать в качестве опыта нечто, ею же заданное. Добавьте к этому внутренние беспроводной маршрутизатор и источник питания, и вы получите четыре базовых компонента этой технологии, обеспечивающей коммуникацию непосредственно от сознания к сознанию (mind‑to‑mind communications technology).

Разумеется, предстоит преодолеть значительные технические трудности, но давайте пока оставим их в стороне и сосредоточим внимание прежде всего на сложностях концептуального характера. Что это означает – «читать сознание» (to read a mind)? Сия простая фраза подразумевает ясность исходного посыла – предположения о том, что представляют собой само сознание и его чтение. Чтение сознания, майндридинг[24], – это передача внутренней речи человека, ощущений и впечатлений или интерпретаций ощущений и впечатлений (например, не воспоминание о том, что он увидел, но чувство чего‑то прекрасного, возникшее благодаря увиденному)? А может быть, это передача внутренних ощущений – таких, как боль или чувство голода? Или, наконец, передача интенций – скажем, намерения совершить телесное движение? А если все вышеперечисленное – то в определенном порядке или одновременно? До тех пор, пока на эти вопросы не даны ответы, выражения вроде «чтение сознания» или даже «коммуникация» не значат ничего.

Есть и второе концептуальное затруднение, которое тоже не обойти. Несколько десятилетий назад ученые‑нейробиологи отвергали идею о том, что мозг способен интерпретировать данные о внешнем мире опережающим образом. Считалось, например, что сигналы, посылаемые сетчаткой и приходящие с более низких уровней зрительной системы, он воспринимает пассивно, а затем обрабатывает. В настоящее же время установлено, что и сам мозг передает на низшие уровни зрительной системы значительный объем нейроданных. Именно это фундаментально и обусловливает способ обработки визуальной информации. Фактически, поток направляемых «вниз по течению» данных может быть десятикратно бóльшим, чем следующий в противоположном направлении.

Прямая и обратная связи подобного рода – интегральная часть работы сознания. Головной мозг создает зрительные образы, не ограничиваясь простым «считыванием» фотонов света, улавливаемых ретиной. В нем нет никакого «экрана», на который, как в фотоаппарате, проецировался бы внешний мир (чтобы сознание могло обработать его отображение).

Проведем мысленный эксперимент. Допустим, вы встроите в глазное яблоко человека миниатюрную камеру таким образом, чтобы она записывала в точности то, что проходит через зрачок. Просмотр получившегося видео может стать чем‑то вроде ночного кошмара. Бесконечное мерцание, судорожные подергивания, которые могут вызвать тошноту, толчки вперед и назад, неожиданные выпадения картинки из фокуса… А вот в мозгу того же человека изображение будет стабильным. Ясно, что он проделывает определенную работу по высокоуровневой интерпретации видеосигнала для обеспечения целостности впечатления, свободного от сопровождающих необработанный сигнал зрительных шума и дрожания.

Головной мозг создает – вот ключевое слово. Иллюстрацией к сказанному может служить оптическая иллюзия. На рисунке ниже вы можете видеть белый треугольник, острым углом обращенный вниз. Однако там нет никакого белого треугольника. Есть три круга с клиновидными вырезами – как будто это пироги, и из каждого взяли по кусочку. Тем не менее, стороны воображаемого треугольника видны совершенно отчетливо. Вероятно, он и выглядит светлее, чем остальная часть страницы. Вы видите его, поскольку мозг использует собственный концепт треугольника – для подмены этим представлением совокупности фрагментов, коими являются зрительные образы на сетчатке. (Можно также сказать, что мозг вызывает из собственной памяти воспоминание о треугольнике). Словом, восприятие фигуры определяет ваш мозг, а не чернила на бумаге. Смысл одного из моих предложений, выдвигаемых в этой книге, заключается в том, что соответствующим образом установленный имплант может считывать подобные хранящиеся в памяти мозга данные – концепты, относящиеся к верхним уровням зрительной регуляции, – и пересылать их другому мозгу.

Можно попробовать интерпретировать неотфильтрованную, так сказать, активность, которую проявляет головной мозг другого человека. Сначала картина может показаться непостижимо статичной, но практика и опыт помогают видеть, что такого рода образы, тем не менее, имеют различный смысл. Мозг замечательно умело отделяет зрительные паттерны от сопутствующего шума[25]. Например, слепые могут научиться «видеть» своим языком. Для этого им нужно поместить в рот специальное устройство, по форме напоминающее леденец на палочке. Оно преобразует поступающие от видеокамеры данные и в виде электрических импульсов направляет на определенные участки языка. В результате на последнем возникает своего рода зрительное отображение мира. (Слабое электрическое напряжение слегка пощипывает язык – как газированный напиток или шампанское). Поначалу люди, использующие такое устройство, чувствуют только какие‑то таинственные и непонятные ощущения, но постепенно к ним приходит умение ассоциировать определенные сигналы с объектами внешнего мира. Если видеокамера, например, фиксирует на полпути в темном коридоре что‑то светлое, то «леденец» стимулирует середину языка. После некоторой практики пользователи выучиваются «видеть» дверные проемы и кнопки на панели лифта, находят на обеденном столе нужные предметы и даже читают буквы и распознают цифры. Хотя ощущения остаются тактильными и оральными, через некоторое время слепой, благодаря данному устройству, начинает воспринимать окружающее так, как если бы видел на самом деле[26].

Итак, мы знаем, что человеческий мозг способен находить смысл в совершенно новых данных, соотнося их с коррелирующими, уже существующими в мировом опыте. Возможно, супруги или сотрудники, работающие в тесном контакте друг с другом, смогут находить время для усвоения «сырых» (raw)[27]ментальных данных и обмена ими. Это будет интенсивный и глубоко переживаемый личный опыт: частичное или даже полное раскрытие себя – несмотря на все волнение, «шумы» и турбулентный хаос, которыми может встретить такую попытку чужой мозг.

Но освоить такую науку будет очень нелегко. Основная анатомия человеческого мозга одинакова у всех нас, но нейронные цепи заметно различаются в зависимости от личного опыта людей. Идентичные мозги могут быстро приобретать отличительные черты. В маленьком мозге каждого моллюска вида Aplysia (м орской заяц) ровным счетом 162 нейрона, не больше и не меньше. А у каждого представителя Caenorhabditis elegans (разновидность аскарид) – 302[28]. Иными словами, каждое существо этих видов при рождении имеет точно такой же мозг, как и другие представители вида. Однако нейронные связи в их мозгу в процессе жизни приобретают индивидуальные различия. Например, моллюск Aplysia учится в случае приближающейся опасности втягивать жабры. При этом усиливаются существующие синапсы и создаются новые. В этом смысле представители одного и того же вида начинают отличаться друг от друга. (Физические изменения в нейронных сетях можно наблюдать под микроскопом – буквально видя, как формируется память).

Если подобная вариативность, связанная с обучением в процессе жизнедеятельности, возможна для 162 или 302 нейронов, то, вне всяких сомнений, она должна быть еще более характерна для человеческого мозга, включающего 100 миллиардов их. Нейронные связи головного мозга, отображающие те или иные концепции, у разных людей будут существенно различаться. Исходя из предположения, что один мозг может учиться понимать «сырые» (raw), необработанные и неотфильтрованные сигналы другого мозга, мы должны учитывать, что такое обучение будет требовать времени и усилий. Теоретически, представляется вероятным, что мозг будет стремиться воспринимать лишь обобщенные и отделенные от «шумов» и нервозности данные – чтобы соответствующим образом на них реагировать.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: