Принцип работы

Трансформатор состоит из двух катушек, намотанных на железное ядро. Когда ток переменного напряжения проходит через первичную катушку, вокруг неё образовывается магнитное поле, благодаря которому обеспечивается выполнение закона электромагнитной индукции. Сила магнитного поля увеличивается, если ток возрастает от нуля до ее максимального значения, заданного в формуле dΦ/dt. Магнитный поток может изменять свое направление в обе стороны (на подъем и спад), в зависимости от области использования устройства.

Тем не менее, напряженность магнитного поля зависит от числа витков обмоток в ядре, чем меньше витков – тем ниже показатель магнетизма. Когда ток уменьшается, напряженность магнитного поля снижается.

В том случае, когда линии магнитного потока ядра проходят через витки вторичной обмотки, напряжение будет вызываться на вторичной обмотке. Количество индуцированного напряжения будет определяться по формуле: NΦ/dt (Закон Фарадея), где N — количество витков катушки. Это напряжение имеет ту же частоту, что напряжение первичной обмотки.

Коэффициент трансформации трансформатора — это величина, выражающая масштабирующую (преобразовательную) характеристику трансформатора относительно какого-нибудь параметра электрической цепи (напряжения, тока, сопротивления и т. д.).

Принцип работы трансформатора основан на явле­нии взаимоиндукции.

Рис. 1 Схема трансформатора.

При включении источника пе­ременной э. д. с. в первичной обмотке протекает переменный ток, а в сердечнике трансформатора соз­дается переменный магнитный поток. Этот поток про­низывает витки первичной и вторичной обмоток и на каждом отдельном витке, согласно закону электро­магнитной индукции, наводит индуктированную э. д. с. Так как витки каждой обмотки наматываются в одну сторону, то э. д. с., действующая на концах данной об­мотки, будет равна сумме э. д. с. ее отдельных витков.

Если число витков вторичной обмотки W2 меньше числа витков первичной обмотки W1, то и напряжение на концах вторичной обмотки U2 будет меньше напря­жения, действующего на концах первичной обмотки, т. е. U1. В этом случае трансформатор понижает напряжение внешнего источника, поэтому он назы­вается понижающим. Если число витков вторич­ной обмотки W2 больше числа витков первичной обмотки W1, то напряжение U2 будет больше напря­жения U1. В таком случае трансформатор повы­шает напряжение, создаваемое внешним источником, и называется повышающим.

Разделив амплитуду напряжения на вторичной об­мотке U2 на амплитуду напряжения, действующего на первичной обмотке U1 получим величину, которая ха­рактеризует степень преобразования величины напря­жения и называется коэффициентом транс­формации:

n = U2: U1

Так как магнитный поток является общим для обоих обмоток, то отношение напряжения на вторич­ной обмотке к напряжению на первичной обмотке можно заменить отношением чисел витков этих об­моток:

n = U2: U1 = W2: W1

Если n> 1, то трансформатор повышающий, если n< 1, то — понижающий.

Трансформатор — очень простое устройство, которое позволяет, как повышать, так и понижать напряжение. Преобразование переменного тока осуществляется с помощью трансформаторов. Впервые трансформаторы были использованы в 1878 г. русским ученым П. Н. Яблочковым для питания изобре­тенных им «электрических свечей» — нового в то время источника света. Идея П. Н. Яблочкова была развита сотрудником Москов­ского университета И. Ф. Усагиным, сконструировавшим усовершенствованные трансформаторы.

Трансформатор состоит из замкнутого железного сердечника, на который надеты две (иногда и более) катушки с проволочны­ми обмотками (рис. 1). Одна из обмоток, называемая первич­ной, подключается к источнику переменного напряжения. Вторая обмотка, к которой присоединяют «нагрузку», т. е. приборы и устройства, потребляющие электроэнергию, называется вторич­ной.

 
   

Схема устройства трансформатора с двумя обмотками при­ведена на рисунке 2, а принятое для него условное обозначе­ние — на рис. 3.

 
   

Действие трансформатора основано на явлении электромаг­нитной индукции. При прохождении переменного тока по первич­ной обмотке в железном сердечнике появляется переменный маг­нитный поток, который возбуждает ЭДС индукции в каждой обмотке. Причем мгновенное значение ЭДС индукции е в любом витке первичной или вторичной обмотки согласно закону Фарадея определяется формулой:

е = - Δ Ф/ Δ t

Если Ф = Ф0 соsωt, то

е = ω Ф0 sinωt, или

е = E0 sinωt,

где E0= ω Ф0 - амплитуда ЭДС в одном витке.

В первичной обмотке, имеющей п1 витков, полная ЭДС индук­ции e1 равна п1е.

Во вторичной обмотке полная ЭДС. е2 равна п2е, где п2 - чис­ло витков этой обмотки.

Отсюда следует, что

e1 е2 = п1 п2.

Сумма напряжения u1, приложенного к первичной обмотке, и ЭДС e1 должна равняться падению напряжения в первичной обмотке:

u1 + e1 = i1 R1, где R1 - активное сопротивление обмотки, а i1 - сила тока в ней. Данное уравнение непосредственно вытекает из общего урав­нения. Обычно активное сопротивле­ние обмотки мало и членом i1 R1 можно пре­небречь. Поэтому

u1 ≈ - e1.

При разомкнутой вторичной обмотке трансформатора ток в ней не течет, и имеет место соотношение:

u2 ≈ - e2.

Так как мгновенные значения ЭДС e1 и e2 изменяются синфазно, то их отношение в формуле (1) можно заменить отношением дей­ствующих значений E1 и E2 этих ЭДС или, учитывая равенства (2) и (3), отношением действующих значений напряжений U1 и U2.

U1/U2 = E1/E2 = n1/ n2= k.

Величина k называется коэффициентом трансформации. Ес­ли k>1, то трансформатор является понижающим, при k<1 - повышающим.

При замыкании цепи вторичной обмотки в ней течет ток. Тогда соотношение u2 ≈ - e2 уже не выполняется точно, и соответ­ственно связь между U1 и U2 становится более сложной, чем в уравнении (4).

Согласно закону сохранения энергии, мощность в первичной цепи должна равняться мощности во вторичной цепи:

U1I1 = U2I2, (5)

где I1 и I2 — действующие значения силы в первичной и вто­ричной обмотках.

Отсюда следует, что

U1/U2 = I1/I2. (6)

Это означает, что, повышая с помощью трансформатора на­пряжение в несколько раз, мы во столько же раз уменьшаем си­лу тока (и наоборот).

Вследствие неизбежных потерь энергии на выделение тепла в обмотках и железном сердечнике уравнения (5) и (6) вы­полняются приближенно. Однако в современных мощных транс­форматорах суммарные потери не превышают 2—3%.

В житейской практике часто приходится иметь дело с трансформаторами. Кроме тех трансформаторов, которыми мы пользуемся волей-неволей из-за того, что промышленные приборы рассчитаны на одно напряжение, а в городской сети используется другое, — кроме них приходится иметь дело с бобинами автомобиля. Бобина — это повышающий трансформатор. Для создания искры, поджигающей рабочую смесь, требуется высокое напряжение, которое мы и получаем от аккумулятора автомобиля, предварительно превратив постоянный ток аккумулятора в переменный с помощью прерывателя. Нетрудно сообразить, что с точностью до потерь энергии, идущей на нагревание трансформатора, при повышении напряжения уменьшается сила тока, и наоборот.

Для сварочных аппаратов требуются понижающие трансформаторы. Для сварки нужны очень сильные токи, и трансформатор сварочного аппарата имеет всего лишь один выходной виток.

Вы, наверное, обращали внимание, что сердечник трансформатора изготовляют из тонких листиков стали. Это сделано для того, чтобы не терять энергии при преобразовании напряжения. В листовом материале вихревые токи будут играть меньшую роль, чем в сплошном.

Дома вы имеете дело с маленькими трансформаторами. Что же касается мощных трансформаторов, то они представляют собой огромные сооружения. В этих случаях сердечник с обмотками помещен в бак, заполненный охлаждающим маслом.

Передача электроэнергии

Потребители электроэнергии имеются повсюду. Производит­ся же она в сравнительно немногих местах, близких к источникам топливных и гидроресурсов. Поэтому возникает необходимость передачи электроэнергии на расстояния, достигающие иногда сотен километров.

Но передача электроэнергии на большие расстояния связана с заметными потерями. Дело в том, что, протекая по линиям электропередачи, ток нагревает их. В соответствии с законом Джоуля — Ленца, энергия, расходуемая на нагрев проводов ли­нии, определяется формулой

Q=I2Rt

где R — сопротивление линии. При большой длине линии переда­ча энергии может стать вообще экономически невыгодной. Для уменьшения потерь можно, конечно, идти по пути уменьшения сопротивления R линии посредством увеличения площади попе­речного сечения проводов. Но для уменьшения R, к примеру, в 100 раз нужно увеличить массу провода также в 100 раз. Ясно, что нельзя допустить такого большого расходования дорогостоя­щего цветного металла, не говоря уже о трудностях закрепления тяжелых проводов на высоких мачтах и т. п. Поэтому потери энергии в линии снижают другим путем: уменьшением тока в ли­нии. Например, уменьшение тока в 10 раз уменьшает количество выделившегося в проводниках тепла в 100 раз, т. е. достигается тот же эффект, что и от стократного утяжеления провода.

Так как мощность тока пропорциональна произведению силы тока на напряжение, то для сохранения передаваемой мощности нужно повысить напряжение в линии передачи. Причем, чем длиннее линия передачи, тем выгоднее использовать более высо­кое напряжение. Так, например, в высоковольтной линии переда­чи Волжская ГЭС — Москва используют напряжение в 500 кв. Между тем генераторы переменного тока строят на напряжения, не превышающие 16—20 кв., так как бо­лее высокое напряжение потребовало бы принятия более слож­ных специальных мер для изоляции обмоток и других частей генераторов.

Поэтому на крупных электростанциях ставят повышающие трансформаторы. Трансформатор увеличивает напряжение в ли­нии во столько же раз, во сколько уменьшает силу тока. Потери мощности при этом невелики.

Для непосредственного использования электроэнергии в дви­гателях электропривода станков, в осветительной сети и для дру­гих целей напряжение на концах линии нужно понизить. Это до­стигается с помощью понижающих трансформаторов. Причем обычно понижение напряжения и соответственно увеличение силы тока происходит в несколько этапов. На каждом этапе напряжение становится все меньше, а территория, охватываемая электрической сетью, - все шире. Схема передачи и распределения электроэнергии приведена на рисунке.

 
   


Электрические станции ряда областей страны соединены высоковольтными линиями передач, образуя общую электросеть, к которой присоединены потребители. Такое объединение называется энергосистемой. Энергосистема обеспечивает бесперебойность подачи энергии потребителям не зависимо от их месторасположения.

Использование электроэнергии.

Использование электроэнергетики в различных областях науки.

ХХ век стал веком, когда наука вторгается во все сферы жизни общества: экономику, политику, культуру, образование и т.д. Естественно, что наука непосредственно влияет на развитие энергетики и сферу применения электроэнергии. С одной стороны наука способствует расширению сферы применения электрической энергии и тем самым увеличивает ее потребление, но с другой стороны в эпоху, когда неограниченное использование невозобновляемых энергетических ресурсов несет опасность для будущих поколений, актуальными задачами науки становятся задачи разработки энергосберегающих технологий и внедрение их в жизнь.

Рассмотрим эти вопросы на конкретных примерах. Около 80% прироста ВВП (внутреннего валового продукта) развитых стран достигается за счет технических инноваций, основная часть которых связана с использованием электроэнергии. Все новое в промышленность, сельское хозяйство и быт приходит к нам благодаря новым разработкам в различных отраслях науки.

Большая часть научных разработок начинается с теоретических расчетов. Но если в ХIХ веке эти расчеты производились с помощью пера и бумаги, то в век НТР (научно-технической революции) все теоретические расчеты, отбор и анализ научных данных и даже лингвистический разбор литературных произведений делаются с помощью ЭВМ (электронно-вычислительных машин), которые работают на электрической энергии, наиболее удобной для передачи ее на расстояние и использования. Но если первоначально ЭВМ использовались для научных расчетов, то теперь из науки компьютеры пришли в жизнь.

Сейчас они используются во всех сферах деятельности человека: для записи и хранения информации, создания архивов, подготовки и редактирования текстов, выполнения чертежных и графических работ, автоматизации производства и сельского хозяйства. Электронизация и автоматизация производства - важнейшие последствия "второй промышленной" или "микроэлектронной" революции в экономике развитых стран. С микроэлектроникой непосредственно связано и развитие комплексной автоматизации, качественно новый этап которой начался после изобретения в 1971 году микропроцессора - микроэлектронного логического устройства, встраиваемого в различные устройства для управления их работой.

Микропроцессоры ускорили рост робототехники. Большинство применяемых ныне роботов относится к так называемому первому поколению, и применяются при сварке, резании, прессовке, нанесении покрытий и т.д. Приходящие им на смену роботы второго поколения оборудованы устройствами для распознавания окружающей среды. А роботы-"интеллектуалы" третьего поколения будут "видеть", "чувствовать", "слышать". Ученые и инженеры среди наиболее приоритетных сфер применения роботов называют атомную энергетику, освоение космического пространства, транспорта, торговлю, складское хозяйство, медицинское обслуживание, переработку отходов, освоение богатств океанического дна. Основная часть роботов работают на электрической энергии, но увеличение потребления электроэнергии роботами компенсируется снижением энергозатрат во многих энергоемких производственных процессах за счет внедрения более рациональных методов и новых энергосберегающих технологических процессов.

Но вернемся к науке. Все новые теоретические разработки после расчетов на ЭВМ проверяются экспериментально. И, как правило, на этом этапе исследования проводятся с помощью физических измерений, химических анализов и т.д. Здесь инструменты научных исследований многообразны - многочисленные измерительные приборы, ускорители, электронные микроскопы, магниторезонансные томографы и т.д. Основная часть этих инструментов экспериментальной науки работают на электрической энергии.

Очень бурно развивается наука в области средств связи и коммуникаций. Спутниковая связь используется уже не только как средство международной связи, но и в быту - спутниковые антенны не редкость и в нашем городе. Новые средства связи, например волоконная техника, позволяют значительно снизить потери электроэнергии в процессе передачи сигналов на большие расстояния.

Не обошла наука и сферу управления. По мере развития НТР, расширения производственной и непроизводственной сфер деятельности человека, все более важную роль в повышении их эффективности начинает играть управление. Из своего рода искусства, еще недавно основывавшегося на опыте и интуиции, управление в наши дни превратилось в науку. Наука об управлении, об общих законах получения, хранения, передачи и переработки информации называется кибернетикой. Этот термин происходит от греческих слов "рулевой", "кормчий". Он встречается в трудах древнегреческих философов. Однако новое рождение его произошло фактически в 1948 году, после выхода книги американского ученого Норберта Винера "Кибернетика".

До начала "кибернетической" революции существовала только бумажная Информатика, основным средством восприятия которой оставался человеческий мозг, и которая не использовала электроэнергию. "Кибернетическая" революция породила принципиально иную - машинную информатику, соответствующую гигантски возросшим потокам информации, источником энергии для которой служит электроэнергия. Созданы совершенно новые средства получения информации, ее накопления, обработки и передачи, в совокупности образующие сложную информационную структуру. Она включает АСУ (автоматизированные системы управления), информационные банки данных, автоматизированные информационные базы, вычислительные центры, видеотерминалы, копировальные и фототелеграфные аппараты, общегосударственные информационные системы, системы спутниковой и скоростной волокнисто-оптической связи - все это неограниченно расширило сферу использования электроэнергии.

Многие ученые считают, что в данном случае речь идет о новой "информационной" цивилизации, приходящей на смену традиционной организации общества индустриального типа. Такая специализация характеризуется следующими важными признаками:

·

·

·

·

Такой переход от индустриального общества к "информационной цивилизации" стал возможен во многом благодаря развитию энергетики и обеспечению удобным в передаче и применении видом энергии - электрической энергией.

Электроэнергия в производстве.

Современное общество невозможно представить без электрификации производственной деятельности. Уже в конце 80-х годов более 1/3 всего потребления энергии в мире осуществлялось в виде электрической энергии. К началу следующего века эта доля может увеличиться до 1/2. Такой рост потребления электроэнергии прежде всего связан с ростом ее потребления в промышленности. Основная часть промышленных предприятий работает на электрической энергии. Высокое потребление электроэнергии характерно для таких энергоемких отраслей, как металлургия, алюминиевая и машиностроительная промышленность.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: