Требования к прокладке кабеля

Прокладка кабеля осуществляется в соответствии с действующими Правилами устройства электроустановок и СНиП 3.05.06-85

7. Какие типы энергосберегающих трансформаторов вы знаете? За счет каких уст­ройств происходит снижение потерь электроэнергии?

Энергосберегающие трансформаторы

Силовые энергосберегающие трансформаторы в герметичном исполнении серии ТМГэс (ТМГ 12) мощностью от 250 до 1600 кВА имеют самый низкий уровень потерь холостого хода и короткого замыкания из всех серийно выпускаемых в СНГ трансформаторов подобного назначения, и соответствуют рекомендациям Европейского комитета электротехнической стандартизации (CENELEC).

Фото Наименование Кол-во Производитель Цена, руб.
    ТМГэс-12 250/10(6)/0,4 У1 У/Ун-0 по запросу КТЗ 193 974,00
    ТМГэс-12 400/10(6)/0,4 У1 У/Ун-0 по запросу КТЗ 246 660,00
    ТМГэс-12 630/10(6)/0,4 У1 У/Ун-0 по запросу КТЗ 373 928,00
    ТМГэс-12 1000/10(6)/0,4 У1 У/Ун-0 по запросу КТЗ 567 535,00
    ТМГэс-12 1200/10(6)/0,4 У1 У/Ун-0 по запросу КТЗ 759 411,00

К приоритетным мероприятиям по снижению технических потерь электроэнергии в распределительных электрических сетях 0,4-35 кВ относятся:
использование 10 кВ в качестве основного напряжения распределительной сети;
увеличение доли сетей с напряжением 35 кВ;
сокращение радиуса действия и строительство ВЛ (0,4 кВ) в трехфазном исполнении по всей длине;
применение самонесущих изолированных и защищенных проводов для ВЛ напряжением 0,4-10 кВ;
использование максимального допустимого сечения провода в электрических сетях напряжением 0,4-10 кВ с целью адаптации их пропускной способности к росту нагрузок в течение всего срока службы;
разработка и внедрение нового, более экономичного, электрооборудования, в частности, распределительных трансформаторов с уменьшенными активными и реактивными потерями холостого хода, встроенных в КТП и ЗТП конденсаторных батарей;
применение столбовых трансформаторов малой мощности (6-10/0,4 кВ) для сокращения протяженности сетей напряжением 0,4 кВ и потерь электроэнергии в них;
более широкое использование устройств автоматического регулирования напряжения под нагрузкой, вольтодобавочных трансформаторов, средств местного регулирования напряжения для повышения качества электроэнергии и снижения ее потерь;
комплексная автоматизация и телемеханизация электрических сетей, применение коммутационных аппаратов нового поколения, средств дистанционного определения мест повреждения в электрических сетях для сокращения длительности неоптимальных ремонтных и послеаварийных режимов, поиска и ликвидации аварий;
повышение достоверности измерений в электрических сетях на основе использования новых информационных технологий, автоматизации обработки телеметрической информации.

Решающее значение при выборе тех или иных мероприятий по совершенствованию учета и мест их проведения имеют расчеты и анализ допустимых и фактических небалансов электроэнергии на электростанциях, подстанциях и в электрических сетях в соответствии с Типовой инструкцией РД 34.09.101-94 [3].

В условиях общего спада нагрузки и отсутствия средств на развитие, реконструкцию и техперевооружение электрических сетей становится все более очевидным, что каждый вложенный рубль в совершенствование системы учета сегодня окупается значительно быстрее, чем затраты на повышение пропускной способности сетей и даже на компенсацию реактивной мощности. Совершенствование учета электроэнергии в современных условиях позволяет получить прямой и достаточно быстрый эффект. В частности, по оценкам специалистов, только замена старых, преимущественно малоамперных однофазных счетчиков класса 2,5 на новые класса 2,0 повышает собираемость средств за переданную потребителям электроэнергию на 10-20%. В денежном выражении по России в целом это составляет порядка 1-3 млрд. руб в год. Нижняя граница этого интервала соответствует тарифам на электроэнергию, верхняя - возможному их увеличению.

Однако эффективное внедрение АСКУЭ - задача долговременная и дорогостоящая, решение которой возможно лишь путем поэтапного развития системы учета, ее модернизации, метрологического обеспечения измерений электроэнергии, совершенствования нормативной базы.

Основным и наиболее перспективным решением проблемы снижения коммерческих потерь электроэнергии является разработка, создание и широкое применение автоматизированных систем контроля и учета электроэнергии (АСКУЭ), в том числе для бытовых потребителей, тесная интеграция этих систем с программным и техническим обеспечением автоматизированных систем диспетчерского управления (АСДУ), обеспечение АСКУЭ и АСДУ надежными каналами связи и передачи информации, метрологическая аттестация АСКУЭ.

Очень важное значение на стадии внедрения мероприятий по снижению потерь электроэнергии в сетях имеет так называемый человеческий фактор, под которым понимается:
обучение и повышение квалификации персонала;
осознание персоналом важности для предприятия в целом и для его работников лично эффективного решения поставленной задачи;
мотивация персонала, моральное и материальное стимулирование;
связь с общественностью, широкое оповещение о целях и задачах снижения потерь, ожидаемых и полученных результатах.

На сегодняшний день к первоочередным задачам этого развития относятся:
осуществление коммерческого учета электроэнергии (мощности) на основе разработанных для энергообъектов и аттестованных методик выполнения измерений (МВИ) по ГОСТ Р 8.563-9 Разработка и аттестация МВИ энергообъектов должны проводиться в соответствии с типовыми МВИ - РД 34.11.333-97 и РД 34.11.334-97 [4];
периодическая калибровка (поверка) счетчиков индукционной системы с целью определения их погрешности;
замена индукционных счетчиков для коммерческого учета на электронные счетчики (за исключением бытовых индукционных однофазных счетчиков);
создание нормативной и технической базы для периодической поверки измерительных трансформаторов тока и напряжения в рабочих условиях эксплуатации с целью оценки их фактической погрешности;
создание льготной системы налогообложения для предприятий, выпускающих АСКУЭ и энергосберегающее оборудование;
совершенствование правовой основы для предотвращения хищений электроэнергии, ужесточение гражданской и уголовной ответственности за эти хищения, как это имеет место в промышленно развитых странах;
создание нормативной базы для ликвидации бесхозных потребителей и электрических сетей, обеспечение безубыточных условий их принятия на баланс и обслуживание энергоснабжающими организациями;
создание законодательной и технической базы для внедрения приборов учета электроэнергии с предоплатой.

Руководители должны уметь решать общие задачи управления процессом снижения потерь в сетях, исполнители - уметь решать конкретные задачи. Целью обучения должно быть не только получение новых знаний и навыков, но и обмен передовым опытом, распространение этого опыта во всех предприятиях энергосистемы.

Для того чтобы требовать от персонала Энергосбыта, предприятий и работников электрических сетей выполнения нормативных требований по поддержанию системы учета электроэнергии на должном уровне, по достоверному расчету технических потерь, выполнению мероприятий по снижению потерь, персонал должен знать эти нормативные требования и уметь их выполнять. Кроме того, он должен хотеть их выполнять, т. е. быть морально и материально заинтересованным в фактическом, а не в формальном снижении потерь. Для этого необходимо проводить систематическое обучение персонала не только теоретически, но и практически, с переаттестацией и контролем усвоения знаний (экзаменами). Обучение должно проводиться для всех уровней - от руководителей подразделений, служб и отделов до рядовых исполнителей.

Необходимы, очевидно, новые подходы к нормированию потерь электроэнергии в сетях, которые должны учитывать не только их техническую составляющую, но и систематическую составляющую погрешностей расчета потерь и системы учета электроэнергии.

Однако одних знаний и умений недостаточно. В энергоснабжающих организациях должна быть разработана, утверждена система поощрения за снижение потерь электроэнергии в сетях, выявление хищений электроэнергии с обязательным оставлением части полученной прибыли от снижения потерь (до 50%) в распоряжении персонала, получившего эту прибыль.

В конечном счете, должен быть создан такой экономический механизм, который ставил бы в прямую зависимость премирование персонала от его активности и эффективности в области снижения потерь.

Очень важен контроль со стороны руководителей энергосистемы, предприятий, районов, электросетей и Энергосбыта за эффективностью работы контролеров, мастеров и монтеров РЭС с целью предотвращения получения личного дохода непосредственно с виновников хищений, помощи потребителям по несанкционированному подключению к сетям и т. п.

8. Перечислите показатели качества электроэнергии и их нормативы.

Электроприборы и оборудование предназначены для работы в определённой электромагнитной среде. Электромагнитной средой принято считать систему электроснабжения и присоединенные к ней электрические аппараты и оборудование, связанные кондуктивно и создающие в той или иной мере помехи, отрицательно влияющие на работу друг друга. При возможности нормальной работы оборудования в существующей электромагнитной среде, говорят об электромагнитной совместимости технических средств.

Единые требования к электромагнитной среде закрепляют стандартами, что позволяет создавать оборудование и гарантировать его работоспособность в условиях соответствующих этим требованиям. Стандарты устанавливают допустимые уровни помех в электрической сети, которые характеризуют качество электроэнергии и называются показателями качества электроэнергии (ПКЭ).

С эволюционным изменением техники изменяются и требования к электромагнитной обстановке, естественно в сторону ужесточения. Так наш стандарт на качество электроэнергии, ГОСТ 13109 от 1967 года, с развитием полупроводниковой техники был пересмотрен в 1987 году, а с развитием микропроцессорной техники пересмотрен в 1997 году.

Показатели качества электрической энергии, методы их оценки и нормы определяет Межгосударственный стандарт: «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения» ГОСТ 13109-97.

Наименование ПКЭ Наиболее вероятная причина
Отклонение напряжения
δUy установившееся отклонение напряжения график нагрузки потребителя
Колебания напряжения
δUt размах изменения напряжения потребитель с резкопеременной нагрузкой
Pt доза фликера
Несимметрия напряжений в трёхфазной системе
K2U коэффициент несимметрии напряжений по обратной последовательности потребитель с несимметричной нагрузкой
K0U коэффициент несимметрии напряжений по нулевой последовательности
Несинусоидальность формы кривой напряжения
KU коэффициент искажения синусоидальности кривой напряжения потребитель с нелинейной нагрузкой
KU(n) коэффициент n-ой гармонической составляющей напряжения
Прочие
Δf отклонение частоты особенности работы сети, климатические условия или природные явления
ΔtП длительность провала напряжения
Uимп импульсное напряжение
KперU коэффициент временного перенапряжения

Большинство явлений, происходящих в электрических сетях и ухудшающих качество электрической энергии, происходят в связи с особенностями совместной работы электроприёмников и электрической сети.

Семь ПКЭ в основном обусловлены потерями (падением) напряжения на участке электрической сети, от которой питаются соседние потребители. Потери напряжения на участке электрической сети (k) определяются выражением:

ΔUk = (Pk·Rk + Qk·Xk) / Uном

Здесь активное (R) и реактивное (X) сопротивление k-го участка сети, практически постоянны, а активная (P) и реактивная (Q) мощность, протекающие по k-му участкусети — переменны, и характер этих изменений влияет на формирование электромагнитных помех:

 При медленном изменении нагрузки в соответствии с её графиком — отклонение напряжения;

 При резкопеременном характере нагрузки — колебания напряжения;

 При несимметричном распределении нагрузки по фазам электрической сети — несимметрия напряжений в трёхфазной системе;

 При нелинейной нагрузке — несинусоидальность формы кривой напряжения.

В отношении этих явлений потребители электрической энергии имеют возможность тем или иным образом влиять на её качество.

Всё прочее, ухудшающее качество электрической энергии, зависит от особенностей работы сети, климатических условий или природных явлений. Поэтому, возможности влиять на это потребитель электрической энергии не имеет, он может только защищать своё оборудование специальными средствами, например, устройствами быстродействующих защит или устройствами гарантированного питания (UPS).

9. Что характеризует коэффициент реактивной мощности?


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: