double arrow

Расчет систем солнечного теплоснабжения

Расчёт солнечных установок включает определение располагаемого количества солнечной энергии, теплопроизводительности солнечного коллектора и установки в целом, тепловой нагрузки отопления и горячего водоснабжения, энергетических и геометрических характеристик гелиосистемы, в том числе площади поверхности коллектора, объёма аккумулятора теплоты, годовой доли солнечной энергии в покрытии тепловой нагрузки и годовой экономии топлива. Рассмотрим методику теплового расчета применительно к солнечной системе горячего водоснабжения (ССГВ). Площадь поверхности КСЭ для сезонной солнечной системы горячего водоснабжения, работающей с апреля по сентябрь, можно упрощенно определить по формуле [1]:

Fк=Vгв/(qг.в. ηт), (11)

где Vгв – средний суточный расход горячей воды, л/день; qг.в – среднесезонная суточная удельная производительность системы по горячей воде, л/(м2×день); ηт=0,8÷0,85 – коэффициент, учитывающий теплопотери трубопроводов.

Величину среднесезонной суточной удельной производительности системы по горячей воде qг.в следует определять в зависимости
от суточного поступления солнечной энергии Е на горизонтальную поверхность согласно рис. 13.

Если в системе не предусмотрен резервный источник теплоты (РИТ), то расчет ССГВ ведется по величине Е для апреля, но при этом в летние месяцы будет возникать неиспользуемый избыток теплоты.

Если же резервный источник теплоты предусмотрен, то расчет ССГВ ведется для июня, тогда в остальной период года система обеспечит долю тепловой нагрузки fср на горячее водоснабжение Qг.в., а резервный источник даст (1-fср)×Qг.в. теплоты.

Пример расчета сезонной ССГВ в Ростове-на-Дону: Vг.в.=4,8 м3/день, tг.в.=45°С и tк.в.=15°С.

Выбираем КСЭ типа НПК-2, β=φ-15°=32°.

Вычислим Fк и экономию топлива.

Определяем Е=15,84 МДж/(м2·день) (апрель) и 23,62 МДж/(м2·день) (июнь). По рис. 13 находим qг.в.=52,5 л/день (апрель) и 80 л/день (июнь) на 1 м2 площади КСЭ.

q, кг/м2Äдень
Ег, МДж/м2Äдень
 
 
 
 
 
 
 
 

Рис.13. Зависимость удельной суточной производительности системы

солнечного горячего водоснабжения от суточного суммарного поступления солнечной энергии Ег на горизонтальную поверхность

По формуле (11) находим Fк=107,6 м2 (апрель) и 70,6 м2 (июнь). При отсутствии резервного источника энергии целесообразно использовать КСЭ с Fк=107,6 м2, а при его наличии – Fк = 70,6 м2. Месячные величины f равны: fIV=0,66; fV=0,83, fVI=fVII=1, fVIII=0,82, fIX=0,61, a средняя за сезон доля нагрузки солнечной системы горячего водоснабжения составляет fср=0,82.

Объем аккумулятора Vак=0,05×Vк=3,5 м3. Расход энергии от резервного источника теплоты за сезон составит:

QРИТ=(1-fср)Qг.в=0,18·110=19,8 ГДж.

Экономия топлива (при КПД теплогенератора, равном ηт.г.=0,55):

.

Расчет систем ССГВ рекомендуется проводить с помощью номограммы, представленной на рис. 14, согласно которой по исходным данным (φ, Е, Ек, Тв и Qн) определяют Fк.

По номограмме на рис. 14 при φ=47° для июня (Е=23,62 МДж/(м2·день)) получим Ек=22 МДж/(м2·день), по известным величинам φ, Е, Ек и Тв=19,2 °С при суточной тепловой нагрузке Qн=Vr·ρ×cp·Δt=4,8·1000×4,19×(47-15)=603 МДж/день находим Fк=72 м2. Расхождение между величиной поверхности, полученной по формуле (11), и номограммой (рис. 14) составляет 2,1%, что позволяет рекомендовать номограмму для расчетов в инженерной практике.

В индивидуальных жилых зданиях гелиоустановки, как правило, используются в теплое время для нужд горячего водоснабжения. При этом избыточное тепло может подаваться с помощью жидкого теплоносителя в основание здания, с целью его аккумуляции и дальнейшего использования в холодный период года.

Солнечные установки теплоснабжения недопустимо относить к экологически чистым видам энергии, в лучшем случае к экологически чистой можно отнести конечную стадию, то есть стадию эксплуатации солнечных установок, и то относительно. Солнечные концентраторы вызывают большие по площади затенения земель, что приводит к сильным изменениям почвенных условий и растительности.

Рис. 14. Номограмма для определения площади коллектора солнечной энергии Fк
и среднемесячного суточного поступлении солнечной энергии Ек
на поверхность КСЭ с оптимальными углом наклона и ориентацией

Нежелательное экологическое воздействие вызывает нагрев воздуха при прохождении через него солнечного излучения, сконцентрированного зеркальными отражателями, что приводит к изменению теплового баланса, влажности, направления ветра, в некоторых случаях возможны перегрев
и возгорание систем теплоснабжения, использующих солнечные концентраторы.

Применение низкокипящих жидкостей при неизбежной их утечке могут привести к значительному загрязнению питьевой воды. Особую опасность представляют нитраты, являющиеся высокотоксичными веществами.

Солнечные станции являются достаточно материалоемкими и требуют отчуждения значительных территорий для своего размещения.

2. Использование энергии ветра
с помощью ветроэлектрогенераторов


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: