Внешний фотоэффект. Если на металл падает свет, то из металла вылетают электроны, это экспериментальный факт, был в своё время такой опыт

Если на металл падает свет, то из металла вылетают электроны, это экспериментальный факт, был в своё время такой опыт, и явление называется фотоэффектом.Металлы – это такие вещества, у которых при соединении атомов в решётку отскакивают валентные электроны, остаются ионы, которые стоят в узлах решётки, и, значит, мы имеем такую структуру: ионы с положительными зарядами, а между ними электроны, и эти электроны свободно сквозят через эту решётку. Почему электрон не вылетает, никаких стенок нет? Ответ простой: как только электрон вылетел, весь кусок (до этого был нейтральным) становится положительно заряженным, и он затягивает его обратно. Вроде бы мы ответили на вопрос, но не так-то просто!Если рисовать потенциальную энергию электронов в металле, то это можно изобразить так: вне металла уровень постоянный, там нет электрического поля, а внутри металла потенциальная энергия падает. Это соответствует тому, что в этой области действует сила , затягивающая электроны, внутри электрон опять свободен, сила на него не действует, и внутри потенциальная энергия снова постоянна. Вот такая картина потенциальной энергии (рис.1.5).

Если иметь в виду эту аналогию, то понятно, что свет при фотоэффекте ведёт себя как частица, как летящая пуля: как бы далеко это движение не удалялось от источника, если произошло взаимодействие, то электрон вылетит с той же самой скоростью. То есть эффект взаимодействия от расстояния не зависит; вопрос заменяет вероятность того, что свет провзаимодействует с электроном. Именно это и говорит, что при фотоэффекте свет ведёт себя не как волна, энергия которой убывает как , а как частица при взрыве шариковой бомбы. Ещё раз повторю, взаимодействие света с веществом происходит так же, как, если бы он был потоком частиц. Эти частицы получили название фотоны.

Энергия фотона связана с частотой. То, что мы в волновой теории называли частотой, а просто визуально это проявляется в цвете, эта вещь определяет энергию фотона: , где h – постоянная Планка. Она появилась немного раньше и по другим причинам (как она появилась, мы это в своё время обсудим). h – это некоторая константа с размерностью , такая величина в физике называется действием. Импульс фотона – это энергия, делённая на скорость света: . Здесь полезно вспомнить релятивистскую формулу для связи между энергией и скоростью или, что тоже, с импульсом: . Когда импульс равен нулю (p = 0), , это так называемая энергия покоя. Обсуждали мы в своё время, что теория относительности обнаружила связь между энергией и массой.

Механические колебания Существуют периодические и непериодические колебания. Особое место среди первых из них занимают гармонические колебания.

Гармоническими называются колебания, для которых изменяющаяся величина зависит от времени по закону синуса или косинуса.

Уравнение гармонических колебаний можно записать в виде:
x = A*sin(wt + f0), где

x - смещение точки от положения равновесия,
A - амплитуда колебаний,
(wt+f0) - фаза колебаний,
f0 - начальная фаза,
w - частота,
t - время.

Скорость гармонического колебания

Ускорение колеблющейся точки

При механических колебаниях колеблющееся тело (или материальная точка) обладает кинетической и потенциальной энергией. Кинетическая энергия тела W:


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: