double arrow

Наблюдательные аргументы в пользу космологической постоянной

3

Просуммируем основные аргументы в пользу существования космологической постоянной.

Первый - кратко называют "аргументом по Сверхновым". Вообще говоря, вместо Сверхновых можно взять любой объект, удовлетворяющий двум условиям. Во-первых, он должен быть достаточно ярким ("пятирублевой монетой" в терминах введения), чтобы его можно было увидеть с большого расстояния, и, во-вторых, его светимость не должна зависеть от конкретного представителя (все монеты должны быть одинаково чистыми). Если объект является такой "стандартной свечой", не представляет труда вычислить его яркость на любом расстоянии и в рамках любой космологической модели. После этого, сопоставив теоретические расчеты с реальными наблюдениями, можно определить параметры Вселенной. Многолетние поиски такой стандартной свечи привели к тому, что в настоящее время в этом качестве используют Сверхновые звезды типа Iа, а анализ кривых светимости выявил значительную по величине космологическую постоянную.

Сверхновая (любого типа) не объект, а явление, в данном случае - явление взрыва звезды-прародителя. Согласно современным представлениям, этот прародитель - так называемый белый карлик с массой, превышающей пороговое значение ~1,4 (массы Солнца), до которого такая звезда еще остается устойчивой. Внешним источником падающей массы служит звезда (например, гигант, заполнивший в ходе своей эволюции полость Роша) - компаньон двойной (или кратной) звездной системы. Вплоть до критического значения массы силы гравитации, действующие в звезде, уравновешиваются давлением вырожденного электронного газа. При дальнейшем увеличении массы электронное давление оказывается недостаточным и происходит коллапс (и взрыв) звезды. Однако этот взрыв выглядит простым только в кратком изложении: до сих пор физические процессы, протекающие в такой звезде, из-за своей сложности остаются недостаточно изученными. Более того, до сих пор не существует последовательной теории взрыва белого карлика.

То, что прародители Сверхновых типа Iа принадлежат к одному классу звезд и находятся в узком диапазоне масс, само по себе не служит обоснованием того, что Сверхновые могут служить стандартными свечами. Прежде всего, то, как вспышка Сверхновой наблюдается на Земле, зависит от свойств межзвездной среды, через которую распространяется излучение. Если среда содержит много пыли, свет, исходящий от Сверхновой, испытывает значительное поглощение, что в конечном счете может внести значительную ошибку в величины и/или точность определяемых таким методом космологических параметров.

Другая внутренняя проблема теста по Сверхновым - разный химический состав близких и удаленных Сверхновых. В самом деле, различие между кривыми, описывающими связь между видимой звездной величиной и красным смещением в разных космологических моделях, увеличивается с ростом красного смещения, на котором мы наблюдаем Сверхновые. Наличие систематического эффекта, зависящего от красного смещения, может стать серьезным препятствием на пути восстановления космологической модели.




Следующий аргумент в пользу значительной космологической постоянной - это наблюдаемая при разных величинах красного смещения эволюция числа скоплений галактик. С одной стороны, ее определяет темп роста амплитуды возмущений плотности вещества (которая, в свою очередь, зависит от космологической модели), а с другой - общее число скоплений нормируется на современную эпоху. Поэтому, несмотря на то, что рост возмущений во Вселенной с большой космологи ческой постоянной сильно подавлен, число скоплений галактик в прошлом оказывается выше, чем во Вселенной, где космологическая постоянная равна нулю. (В мире с конечной скоростью света в принципе можно заглянуть в прошлое Вселенной: наблюдая удаленные объекты, мы видим их такими, какими они были в момент испускания приходящего к нам кванта света, а поскольку расстояния до космологических объектов огромные, то и "возможность" заглянуть в прошлое соответствующая).

Третий аргумент - это наблюдаемый эффект Сакса-Вольфа, устанавливающий связь между угловой анизотропией реликтового излучения и возмущениями гравитационного потенциала на пути распространения реликтового фотона от момента излучения до момента его приема. Традиционно этот эффект описывают как совокупность нескольких слагаемых, одно из которых - интегральный эффект Сакса-Вольфа - вызвано смещением частоты кванта под влиянием переменного гравитационного поля формирующейся крупномасштабной структуры Вселенной. Эволюция гравитационного потенциала на линейной стадии образования первичных скоплений и сверхскоплений галактик существенно зависит от наличия (и, конечно, величины) космологи ческой постоянной. Если во Вселенной доминирует вещество, гравитационный потенциал не зависит от времени. В этом случае интегральный эффект Сакса-Вольфа равен нулю - реликтовый квант не испытывает дополнительного смещения частоты при прохождении гравитационных "ям" и "хребтов" близлежащей структуры Вселенной. В обратном случае, если космологическая постоянная достаточно велика и влияет на темп расширения сегодняшней Вселенной, поле возмущений гравитационного потенциала на пути распространения фотона успевает измениться (уменьшиться) за время его прохождения, что и ответственно за появление эффекта. Таким образом, интегральный эффект Сакса-Вольфа во Вселенной с большой космологической постоянной приводит к появлению дополнительной анизотропии реликтового излучения, антикоррелирующей с крупномасштабным распределением галактик вокруг нас (квант испытывает красное/синее смещение в направлениях концентраций/деконцентраций галактик), что и выявляется при анализе данных наблюдений.



И, наконец, четвертый (и главный!) аргумент в пользу космологической постоянной - структурный.

Основными источниками наших знаний о структуре Вселенной служат, во-первых, пространственное распределение светящейся материи (галактик, их групп, скоплений и т. д.) и, во-вторых, анизотропия реликтового излучения. Оба этих "источника" чувствительны к количеству вещества во Вселенной, но характер этой зависимости несколько различен, что и позволяет восстанавливать величину плотности материи (а значит, и величину космологи ческой постоянной) с высокой точностью. Так, характерным масштабом, "впечатанным" в пространственное распределение материи вокруг нас, оказывается масштаб, совпадающий с космологическим горизонтом на ранней стадии расширения Вселенной, когда плотностьэнергии излучения сравнялась с плотностью материи. В тот момент времени (около 13 млрд лет назад) эпоха доминирования излучения сменялась эпохой доминирования материи, что вело к смене темпа расширения Вселенной и к изменению скорости роста возмущений. В спектре мощности возмущений плотности это выразилось в появлении характерного "горба". Линейный масштаб, на котором этот горб виден в распределении галактик, определяется величиной Г = Ωмh ≡ 0,2, где Ωм- плотность материи во Вселенной (включая темное вещество и барионы), а h - безразмерная постоянная Хаббла, выраженная в единицах 100 км.с-1.Мпк -1 (в этих единицах величина H = 0,7h). Измерение анизотропии реликтового излучения позволяет определить другую комбинацию тех же космологических параметров: ωм = Ωмh2 ≡ 0,13. Исключая постоянную Хаббла, легко вычислить величину плотности вещества во Вселенной: Ωм = Г2м = 0,3, которая оказывается меньше единицы с высокой степенью достоверности (наблюдательные данные о пространственном распределении вещества - самые точные в современной космологии!). А поскольку данные о мелкомасштабной анизотропии реликтового излучения (местоположение так называемых сахаровских пиков) позволяют однозначно утверждать, что суммарная плотность всех форм материи во Вселенной равна единице (об этом мы уже упоминали в начале статьи), мы приходим к выводу: существует компонента материи, которая не принимает участия в гравитационном скучивании. Такой компонентой может быть только космологическая постоянная.

Заказать ✍️ написание учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой
3

Сейчас читают про:
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7