Структура и функционирование ландшафта

Функционально-динамические

аспекты учения о ландшафте

Структура и функционирование ландшафта

Общее определение структуры как пространственно-временной организованности геосистемы, приведенное во «Введении», естественно имеет силу и применительно к ландшафту. Понятие структуры ландшафта имеет три аспекта, соответствующие трем этапам развития и усложнения этого понятия. Первоначальное представление сводилось к тому, что под структурой понималось взаимное расположение составных частей. В этом представлении заключен лишь чисто пространственный аспект структуры. При дальнейшем развитии понятия возник его функциональный аспект, который требует обращать внимание на способы соединения частей системы, т. е. на внутренние системообразующие связи. Однако представление о структуре ландшафта оставалось статичным, пока не появился третий, динамический, или временной, аспект, т. е. структура ландшафта стала рассматриваться не только как некоторая организованность его составных частей в пространстве, но и как упорядоченность смены его состояний во времени.

Таким образом, для познания структуры ландшафта следует в первую

очередь четко определить все его составные части, а затем изучить

«механизм» их взаимосвязей, памятуя при этом о динамическом подходе. Если представить структурную модель ландшафта в виде графа, то вершины последнего будут соответствовать структурным частям, а ребра — связям

между ними (рис. 38). Структурная модель ландшафта существенно

отличается от модели фации своей многоплановостью, или полисистемностью (по выражению В. С. Преображенского). Структурными элементами фации служат ее географические компоненты, а пространственная упорядоченность структуры (мы пока не будем касаться динамического аспекта) выражается в закономерном расположении компонентов по вертикали и существовании между ними вертикальных же потоков вещества и энергии. Изучение горизонтальной (плановой) внутрифациальной структуры, вообще говоря, не относится к задачам ландшафтоведения и географии, исключая случаи

«зарождения» новых фаций, которые были рассмотрены нами ранее. На схеме (рис. 38) фации

l63


Рис. 38. Схематическая структурная модель ландшафта:

А, Б, В — элементарные геосистемы; а1-3, б 1-3, в 1-3,г1-3— структурные части (компоненты) элементарных геосистем; 1 — межкомпонентные (вертикальные) связи, 2 — межсистемные (латеральные) связи, 3 — внешние связи ландшафта (входные и выходные потоки)

изображены как моноструктурные системы с вертикальными, т. е. межкомпонентными, связями (в виде квадратов А, Б, В), которые, в свою очередь, рассматриваются как элементы структуры ландшафта.

В ландшафте, как мы знаем, различаются две системы внутренних связей

— вертикальные и горизонтальные (латеральные), причем межкомпонентные (вертикальные) связи как бы опосредованы через латеральную структуру ландшафта, через сопряжение входящих в него элементарных геосистем. На рис. 38 латеральные связи показаны линиями, соединяющими блоки А, Б, В,...

1.

Локальные геосистемы разных порядков служат элементами латеральной структуры ландшафта, его блоками, или субсистемами. Следовательно, латеральная, или горизонтальная, структура ландшафта — это то же, что морфологическая структура.

Что касается вертикальной структуры ландшафта, то ее составными частями обычно принято считать отдельные географические компоненты — твердый фундамент, почву, биоту и т. д. Поскольку своими предельными (однородными) пространственными подразделениями они представлены в составе фации, ландшафт выступает как некоторая сложная интегральная система элементарных вертикальных структур. Однако если говорить о функциональном подходе к структуре, то анализ межкомпонентных связей не есть единственно возможный путь. Во-первых, далеко не всегда достаточно рассматривать каждый компонент как единое и неделимое целое, и в анализ приходится вовлекать определенные части, или элементы„компонентов, которые по отношению к геосистеме представляют структурно- функциональные подразделения второго порядка. Так, для понимания роли биоты в ландшафтном «механизме», в системе географи-

1Структуру ландшафта едва ли возможно отобразить с достаточной полнотой на плоскости, и рис. 38 дает

о ней лишь крайне упрощенное представление: на нем показаны лишь морфологические части одного порядка (фации), притом условно обозначены только три блока; модель не отражает смены состояний и т. д. 164


ческих связей, важно различать три функционально разнокачественные (трофические) группы организмов — продуценты, консументы и редуценты. Далее, рассматривая функционирование в ландшафте основной, наиболее активной части биоты, представленной зелеными растениями, важно вычленить из нее всю совокупность ассимилирующих органов, а также подземную часть (корни) и массу транспортно-скелетных органов. Специфическую роль в ландшафтной структуре играет мертвое органическое вещество, сосредоточенное в подстилке, хотя в традиционном перечне географических компонентов подстилка отсутствует и обычно присоединяется к почве на правах ее нулевого горизонта.

Во-вторых, компоненты в общепринятом значении этого слова, строго говоря, не вполне соответствуют составным частям вертикальной структуры ландшафта, которые должны иметь упорядоченное расположение в вертикальном профиле геосистемы в виде ярусов, или горизонтов. Поэтому предпринимались попытки расчленить геосистему по вертикали на особые структурные части — «хорогоризонты», или «геогоризонты».

Согласно Н. Л. Беручашвили, элементарными структурно- функциональными частями ПТК служат так называемые геомассыкачественно разнородные тела, характеризующиеся определенной массой, специфическим функциональным назначением, а также скоростью изменения во времени и (или) скоростью перемещения в пространстве ~. Таковы аэромассы, фитомассы, зоомассы, мортмассы (массы мертвого органического вещества), литомассы, педомассы, гидромассы. Геомассы отличаются от компонентов большей вещественной однородностью. Например, под педомассой подразумевается не почва, а только почвенный мелкозем вместе с гумусом, т. е. органо-минеральная смесь, куда не входят почвенная влага, почвенный воздух, скелетная часть почвы, корни растений и почвенные животные. Под аэромассой имеется в виду «сухой воздух», т. е. смесь атмосферных газов без водяного пара и других примесей. Таким образом, компонент геосистемы в обычном понимании — это более сложное образование, чем геомасса: в нем присутствуют элементы всех геомасс, но одна из них преобладает, служит его основным субстратом.

Однородные слои в пределах вертикального профиля ПТК, характеризующиеся специфическими наборами и соотношениями геомасс, Н. Л. Беручашвили называет геогоризонтами. Основные из них: аэрогоризонт,

аэрофитогоризонт (приземный слой атмосферы, пронизанный растениями),

мортаэрогоризонт (с растительной ветошью), снежный горизонт, педогоризонт, литогоризонт. Каждый из них может быть подразделен в зависимости от количественного соотношения геомасс на геогоризонты второго порядка (например, в аэрофитогоризонте — горизонты с кронами, транспортно-скелетны-

1См.: Беручашеили Н. Л. Четыре измерения ландшафта. М., 1986. С. 22.


ми органами, травяным ярусом, моховым покровом; в педогоризонте — с

разным содержанием почвенной влаги и корней).

Надо заметить, что понятия «геомассы» и «геогоризонты» разработаны применительно к элементарной геосистеме — фации и, следовательно,— к изучению первичных вертикальных связей в ландшафте. Поскольку геомассы и геогоризонты специфичны для разных фаций, установить их единую систему для ландшафта как целого практически невозможно, и поэтому традиционные компоненты сохраняют более универсальное значение при структурно- функциональном изучении геосистем разных уровней.

Состав и взаимное расположение частей — важные элементы понятия о структуре ландшафта, но сами по себе они еще не объясняют способа соединения частей, т. е. того, что составляет главное в представлении о

структуре. Между геосистемами и между их блоками существуют крайне

многообразные связи, которые можно классифицировать по их физической природе, направленности, значимости, тесноте, устойчивости и другим признакам. Первооснову этих связей составляет обмен энергией, веществом, а также информацией. Геосистемы пронизаны вещественно-энергетическими потоками разного происхождения и разной мощности. Следует различать потоки внешние (входные и выходные) и внутренние. Считается, что собственно системообразующее значение имеют внутренние потоки (т. е. потоки между блоками системы), которые по своей интенсивности намного превосходят внешние. Как уже отмечалось, известны два типа внутренних связей (потоков) — вертикальные и горизонтальные, последние играют организующую роль в интеграции простых геосистем в более сложные (геохоры).

Связи между частями системы могут быть односторонними и двусторонними, прямыми и обратными. При этом, по-видимому, помимо обмена веществом и энергией особую роль играют сигнальные формы связи, пока еще недостаточно изученные. Как известно, обратные связи бывают положительными и отрицательными. При положительной обратной связи процесс, вызванный действием того или иного фактора, сам себя усиливает. Примером может служить образование лавин (отсюда выражение — лавинообразное усиление процесса). При отрицательной обратной связи начавшийся процесс сам себя гасит. Так, оледенение возникает в результате воздействия климата при определенных гидротермических условиях, но ледниковый покров создает антициклон, ведущий к уменьшению осадков, питания ледника и его дальнейшего развития. Аналогичные явления можно наблюдать в формировании и развитии озер, болот, оврагов. С отрицательными обратными связями связана способность геосистем к саморегулированию, о чем подробнее пойдет речь в дальнейшем.

Таким образом, существо взаимосвязей в ландшафте не исчерпывается простой передачей вещества или энергии между компонентами или подчиненными геосистемами топологического уровня; вещественно-

энергетические потоки подвергаются преобразованию


(трансформации), входные воздействия вызывают различные ответные реакции в каждом блоке геосистемы, при этом последняя приобретает новые качества.

Совокупность процессов перемещения, обмена и трансформации вещества и энергии в геосистеме мы назвали (см. «Введение») ее функционированием, функционирование ландшафта — интегральный природный процесс; близкий

смысл А.А. Григорьев вкладывал в понятие «единый физико-географический

процесс».

Функционирование ландшафта слагается из множества элементарных процессов, имеющих физико-механическую, химическую или биологическую природу (например, падение капель дождя, растворение газов в воде, поднятие почвенных растворов по капиллярам, испарение, фотосинтез, разложение органической массы микроорганизмами и т. п.). Все географические процессы могут быть в конечном счете сведены к подобным элементарным составляющим, но это означало бы редукцию, не отвечающую задачам познания геосистемы как целого и привело бы к потере этого целого.

Возможны разные подходы к географическому синтезу природных процессов и разные уровни этого синтеза. Один из них состоит в интеграции процессов раздельно по формам движения материи, т. е. в рассмотрении их на уровне физических, химических и биологических закономерностей и методами соответствующих наук. Такой подход вполне закономерен, на нем основано формирование особых направлений в науке — геофизики ландшафта, геохимии ландшафта и биотоки ландшафта (биогеоценологии). Все они изучают функционирование ландшафта с позиций соответствующих фундаментальных наук. Однако в географической реальности элементарные природные процессы, связанные с отдельными формами движения, переплетаются и переходят друг в друга. С точки зрения географа, их расчленение искусственно и условно. Уже в отраслевых географических дисциплинах делается шаг к их синтезу. Так называемые частные географические процессы, например сток или почвообразование, нельзя считать только физическими, только химическими или биологическими. Физическая сущность стока элементарна — это всего лишь движение воды под действием силы тяжести. Однако географический смысл стока вовсе не сводится к простым законам механики. Сток — это одновременно процесс гидрологический, геоморфологический, геохимический и географический в широком смысле слова.

Сток, в свою очередь, служит лишь звеном еще более сложного и комплексного процесса — влагооборота. Рассматривая влагооборот как единый процесс, мы делаем еще один шаг к географическому синтезу, к познанию функционирования геосистем как целостных образований. Влагооборот — важная составная часть механизма взаимодействия между компонентами геосистем и между самими геосистемами, его можно определить как одно из главных функциональных звеньев ландшафта. Другим звеном является минеральный обмен, или геохимический круговорот. В совокупности влагооборот


и минеральный обмен (вместе с газообменом) охватывают все вещественные потоки в геосистеме. Но перемещение, обмен и преобразование вещества сопровождаются поглощением, трансформацией и высвобождением энергии

— массообмен тесно связан с энергообменом, который также следует

рассматривать как особое функциональное звено ландшафта.

Таким образом, мы получили три главных составляющих функционирования ландшафта. Но это лишь один подход к его изучению, который должен быть дополнен с учетом иных важных аспектов функционирования. В каждом из названных звеньев необходимо различать биотическую и абиотическую составляющие. Во влагообороте, например, с биотой связаны такие существенные потоки, как десукция и транспирация, участие воды в фотосинтезе, а также задержание части осадков листовой поверхностью и др. Биотический обмен веществ («малый биологический круговорот») — наиболее активная часть минерального обмена. Биологический метаболизм осуществляется, как известно, за счет использования солнечной энергии. Продукционный процесс и связанное с ним вещественно-энергетическое взаимодействие биоты со всеми остальными компонентами геосистемы — настолько важная составляющая в механизме функционирования ландшафта, что вполне закономерно выделять ее в особое функциональное звено, как бы перекрывающее три исходных звена, намеченных ранее. Подобное перекрытие служит доказательством единства функционирования геосистемы как целого. В сущности, перекрытия имеются между всеми звеньями. Транспирация, например,— составной элемент влагооборота и одновременно биологического метаболизма и энергетики геосистемы. Любое расчленение единого процесса функционирования на звенья условно и служит лишь методическим приемом в целях познания.

Далее, в каждом звене важно различать внешние (входные и выходные) потоки и внутренний оборот. Функционирование геосистем имеет квазизамкнутый характер, т. е. форму круговоротов с годичным циклом.

Степень замкнутости цикла может сильно варьировать, представляя важную

характеристику ландшафта. От интенсивности внутреннего энергомассообмена зависят многие качества ландшафта, в частности его устойчивость к возмущающим внешним воздействиям.

Для количественной оценки функционирования и соотношения между. внешним и внутренним вещественно-энергетическим обменом необходимы данные по балансам различных видов вещества и энергии, т. е. нужно знать величины их поступления в систему, внутреннего обмена, трансформации и аккумуляции в системе и потерь за счет выноса во внешнюю среду (по выходным каналам). Изученность ландшафтов в этом отношении крайне недостаточна и неравномерна, так что пока еще приходится пользоваться отрывочными, не всегда однородными, а также косвенными данными.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: