Студопедия
Обратная связь

Сколько стоит твоя работа?
Тип работы:*
Тема:*
Телефон:
Электронная почта:*
Телефон и почта ТОЛЬКО для обратной связи и нигде не сохраняется.

Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram 500-летие Реформации

Устройство и действие статических гидропередач

Рис. 7.1 Принципиальная схема статической гидропередачи

Рассмотрим простейший механизм (рис.7.1), состоящий из двух сообщающихся цилиндров, в которых размещены поршни со штоками, а пространство между поршнями залито вязкой жидкостью. При этом в процессе рассуждений, трением в подвижных сочленениях, усилием возвратной пружины и утечками жидкости из цилиндров будем пренебрегать.

Если шток с поршнем узла (1) переместить на расстояние L1, то, при принятых допущениях нетрудно убедиться, что поршень со штоком узла (2) переместится на расстояние . При этом усилие F1, необходимое для перемещения поршней бесконечно мало. Однако, если шток узла (2) упрется в какое-то препятствие, например, вращающийся вал, то, развив усилие F1 на педали штока (1), получим, что вал будет нагружен силой .  Таким образом, механизм передает движение и силу. Известно, что произведение силы на скорость есть мощность, т.е. механизм при помощи жидкости передает энергию от источника к объекту (валу, который надо затормозить). Таким образом, этот механизм удовлетворяет общему определению гидропередачи (передача энергии посредством жидкости).

Для удовлетворения понятию “статическая гидропередача”, должно быть выполнено условие геометрического отделения полости нагнетания от полости всасывания. Здесь, правда, полость одна. Но она попеременно выполняет функции, то полости нагнетания, то полости всасывания. Таким образом, геометрическое разделение полостей обеспечивается временной паузой. То есть подобный простейший механизм полностью соответствует данному ранее определению понятия статической гидропередачи.

Рассматривая представленный на рис.7.1 механизм легко заметить, что узлы (1) и (2) в принципе конструктивно одинаковы и обратимы. Следовательно, для образования статической гидропередачи непрерывного, например, вращательного движения можно взять два одинаковых насоса, соединить их полости трубопроводами, залить жидкостью, и вал одного насоса соединить с источником энергии, а другого с нагрузкой (рис. 7.2). Если насос и гидромотор (ГМ) нерегулируемы, имеют одинаковые рабочие объемы, то такая гидропередача будет выполнять функцию гидравлического вала или гидравлической муфты. Если рабочие объемы насоса и гидромотора

 

  

различны, то это будет либо гидравлический редуктор, либо гидравлический мультипликатор.

Применять на практике такие агрегаты, как правило, нецелесообразно из-за относительной дороговизны гидравлических машин. Однако нет правил без исключений, в жизни могут встретиться и такие ситуации, когда подобное решение будет самым рациональным (например, передать вращение от электродвигателя (ЭД), размещенного в трюме к какому-то механизму, расположенному на 2-5 палубе).

Если же взять насос (или ГМ) регулируемым (рис.7.3), то получим гидропривод вращательного движения, ибо такой агрегат уже способен после запуска ЭД и без его остановки запускать или останавливать управляемый объект (J0),  реверсировать его движение и регулировать скорость.
Таким образом, любая гидропередача в принципе должна состоять как минимум из 2-х элементов: насоса, преобразующего механическую энергию какого-либо источника в энергию потока жидкости и гидродвигателя, соединенного с насосом соответствующими каналами и преобразующего энергию потока жидкости обратно в механическую.

Для гидропривода в нашем понимании обязательно наличие управляюще-регулирующего устройства, которое может быть выполнено в виде неотъемлемой составной части насоса или гидродвигателя (а также того и другого), или в виде отдельных специальных механизмов (дросселя с переливным клапаном -  распределителем).

Наличие различных вспомогательных устройств, как-то предохранительных клапанов, обратных клапанов, фильтров, гидрозамков, ограничителей мощности и т.п. определяется конкретным назначением гидропередачи (гидропривода) и требованиями, предъявляемыми к ней (к нему). То есть наличие этих элементов в системе не определяет принцип действия статической гидропередачи.

 

 

 

 

 

 

 

 

 





 

Читайте также:

Особенности гидроприводов и области их применения

Уравнение Бернулли для относительного движения

Особые случаи ламинарного течения

Сила давления жидкости на криволинейные стенки. Закон Архимеда

Местные сопротивления

Вернуться в оглавление: Гидросистемы и гидромашины

Просмотров: 3894

 
 

54.81.88.93 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.