double arrow

Введение

Цель курса – познакомить студентов с новыми, перспективными направлениями развития информационно-измерительной техники и технологий, основанными на достижениях современной науки и техники. Речь идет о дополнительных главах квантовой механики, физики твердого тела, полупроводниковой электроники, оптики, биофизики, которые необходимы для понимания тенденций развития элементной базы экспериментальной физики, метрологии, микроэлектроники, систем получения, обработки, передачи и хранения информации. Важно то, что элементная база микроэлектроники, наноэлектроники и квантовых компьютеров, распознавание образов и анализа изображений, опто-, радио- и акустоэлектроника, а так же оптическая и СВЧ-связь в рамках приоритетных направлений развития науки и техники относятся к критическим технологиям федерального уровня.

С развитием современных сложных автоматических систем управления возникла необходимость создания высокочувствительных, точных и стабильных элементов, воспринимающих информацию о контролируемых процессах; быстродействующих и надежных, потребляющих малую энергию и небольших по массе и габаритам. С расширением диапазонов и видов контролируемых параметров, увеличением требований к точности и быстродействию необходимы измерительные устройства для новых контролируемых физических и физико-химических величин, построенные на новых принципах действия.

В связи с этим можно к настоящему времени в измерительной технике сформировалоси ряд основных проблем:

· оценка предельных и потенциальных пределов достижимой точности и чувствительности измерений ;

· повышение эффективности процессов получения, передачи и преобразования измерительной информации ;

· использование нелинейных принципов измерительного преобразования с целью расширения области применения и улучшения метрологических, эксплуатационных характеристик измерительных устройств;

· интеллектуализация процессов получения, передачи и обработки измерительной информации .

Исследования по разработке новых типов измерительных устройств развиваются по следующим основным направлениям:

· использование нелинейных физических свойств проводниковых, полупроводниковых, диэлектрических и магнитных материалов для построения измерительных элементов, служащих для получения информации;

· использование в процессе измерения и контроля различных вспомогательных физических процессов и химических реакций (среди физических процессов наиболее важную роль играют излучения акустические, оптические, электромагнитные и радиоактивные);

· создание элементов и устройств, использующих радиоспектроскопические, нейтронно-скопические и массо-спектроскопические методы;

· использование в устройствах и элементах вспомогательных реакций, под влиянием которых изменяются свойства анализируемой среды, изменение указанных физических свойств используется для дальнейшего функционального преобразования и формирования сигнала.

В настоящее время в измерительную технику широко внедряются достижения из области разработки искусственного интеллекта. В основу создания таких устройств положены принципы перехода от четкой программируемости их поведения в направлении приближения к принципам функционирования живых систем. Основное свойство таких «интеллектуальных» измерительных устройств состоит в способности адаптации их характеристик, структур, режимов работы к изменяющимся параметрам объекта измерения и условиям работы. Разработка таких интеллектуальных систем требует отхода от традиционных методов проектирования измерительных устройств. Подобно естественному отбору в природе, в технике также происходит постепенное развитие конструкций, усложнение принципов работы устройств. Можно с уверенностью сделать вывод о том, что дальнейшее совершенствование измерительной техники пойдет по пути широкого применения нейросетевых технологий, которые будут использоваться для получения, передачи и обработки измерительной информации. Такие измерительные устройства будут нелинейными, управляемыми, с обратными связями. Это позволит не только улучшить их метрологические характеристики, но и повысить информативность процессов получения, передачи и обработки измерительной информации.

Разработка нового поколения измерительных устройств должна быть основана на широком использовании нелинейных физических эффектов в материалах, используемых для создания чувствительных элементов датчиков, реализации нелинейных режимов работы первичных измерительных преобразователей и систем обработки измерительной информации. Теоретической базой для развития такого направления совершенствования измерительных устройств могут явиться, в частности, успехи в развитии нелинейной динамики. Использование сложных нелинейных динамических систем для создания устройств получения и обработки измерительной информации открывает новые возможности для метрологии и технических измерений.

К одному их основных направлений дальнейшего совершенствования средств измерений отнесится технологический подход, заключающийся:

· в поиске и использовании для построения приборов наиболее эффективных физических явлений;

· в оптимизации проектирования, расчете, отработке конструкций;

· в подборе современных материалов; в отладке и совершенствовании технологии их изготовления;

· использование современных информационных технологий для повышения эффективности получения, передачи и обработки измерительной информации.

Метрологический подход включает в себя поиск путей, направленных:

· на повышение чувствительности измерительных устройств;

· на повышение точности измерений;

· расширение рабочего диапазона средств измерений.

В настоящее время для расширения рабочего диапазона приборов используют запас чувствительности, переключение диапазонов высокочувствительных устройств. С целью повышения точности измерений используют достижения кибернетики и теории информации в области автоматических вычислений при проведении статистической обработки результатов измерений.

Важным направлением совершенствования средств измерений остается стремление к повышению точности и быстродействия измерительных преобразователей, а также обеспечение их работоспособности в условиях широкого изменения дестабилизирующих воздействий.

Решению перечисленных задач может послужить разработка нового поколения измерительных устройств, основанных на широком использовании достижений науки и техники в самых различных областях: в физике, химии, биологии, информатике и т.д. В связи с этим представляется важным рассмотреть вопросы использования в измерительной технике достижений современных технологий. К их числу могут быть отнесены: зондовая микроскопия, нанотехнологии и наноматериалы, микро- и наноэлектромеханические устройства, разработка биопреобразователей, нейрокомпьютеринг. В основе работы большого числа современных средств измерений лежит использование физических эффектов и явлений взаимодействия электромагнитного поля с веществом.

 

Читайте также:

Конструктивные особенности и основные характеристики микроэлектромеханических устройств

MEMS-дисплеи.

Методы исследования наноматериалов и наноструктур

Физико-химические основы построения биосенсоров на основе кантилеверов

Гелиевый ионный микроскоп

Вернуться в оглавление: Современные фундаментальные и прикладные исследования в приборостроении


Сейчас читают про: