Эффект Штарка

 

Эффект установлен в 1913 г. немецким ученым Йоханессом Штарком и характеризует зависимость спектра излучения атомов от напряжённости электрического поля. Зависимость может быть линейной и квадратичной. Для атомов, имеющих ненулевой дипольный момент сдвиг линий спектра пропорционален напряженности электрического поля в первой степени, а для других атомов – во второй.

Объясняется это тем, что диполь с дипольным моментом в электрическом поле имеет дополнительную энергию :

, . (1.7)

Если в обычном состоянии дипольный момент у молекул отсутствует, то под действием поля он появляется. Это является причиной квадратичной зависимости спектра расщепления от напряженности электрического поля. При этом поле может быть либо внешним по отношению к источнику, либо внутренним, создаваемым соседними атомами или ионами.

Эффект Штарка по сути аналогичен эффекту Зеемана. Под действием электрического поля облако электронов, окружающих ядро излучающего атома, изменяет свое положение относительно ядра. В результате изменяются энергетические уровни электронов в атоме. Поскольку свет испускается при переходе электрона с одного энергетического уровня на другой, изменение энергетических уровней приводит к изменению спектра испускаемого света. Эффект Штарка является одним из наиболее убедительных подтверждений квантовой теории строения вещества.

Теория квантово - размерного эффекта Штарка используется при исследовании полупроводниковых нанокристаллов, находящихся в условиях, когда поляризационное взаимодействие электрона и дырки с поверхностью нанокристалла играет доминирующую роль. Установлено, что сдвиги уровней размерного квантования электрона и дырки в нанокристалле во внешнем однородном электрическом поле в области межзонного поглощения определяются квадратичным эффектом Штарка. Предложен новый электрооптический метод, дающий возможность определить величины критических радиусов нанокристаллов, в которых могут возникнуть объемные экситоны.

Эффект был открыт при изучении спектра водорода. Кроме водорода данный эффект подробно изучен также в спектрах гелия, щелочных металлов (Li, Na, K и т.д.) и ряда др. элементов.

В сильных полях, а также в слабых полях для ряда элементов имеет место главным образом квадратичный эффект Штарка с асимметричной картиной расщепления. Величина квадратичного эффекта невелика (в полях ~ В/см расщепление достигает десятитысячных долей эВ).

Рис. 1.6 Расщепление линии водорода H в электрическом поле. Различно поляризованы компоненты линии ( и ) возникают при определенных
комбинациях подуровней.

Эффект Штарка наблюдается не только в постоянных, но и в переменных электрических полях. Влияние высокочастотного электрического поля на уровни энергии атомов (ионов) определяет, в частности, уширение спектральных линий космической плазмы. Движение частиц плазмы и связанное с этим изменение расстояний между ними приводят к быстрым изменениям электрического поля около каждой излучающей частицы. В результате энергетические уровни атомов (ионов), расщепляясь, смещаются на неодинаковую величину. Для излучения совокупности таких частиц характерно увеличение ширины спектральных линий (т.н. штарковское уширение линий).

Читайте также:

Нечёткая логика и теория нечётких множеств

Плёнки Ленгмюра-Блоджет (ЛБ - плёнки) хорошо видны в атомно-силовой микроскоп, с помощью которого удается получать

Вернуться в оглавление: Современные фундаментальные и прикладные исследования в приборостроении


double arrow
Сейчас читают про: