Элементы линейной алгебры и аналитической геометрии

6.1. –x2 – y2 +4xy + 2x – 4y + 1 = 0 6.2. 2x2 + 2y2 -- 2xy -- 2x – 2y + 1 = 0

6.3. 2xy + 2x – 2y = 0 6.4. -- 2x2 -- 2y2 +2xy -- 6x + 6y + 3 = 0

6.5. – 3x2 –3y2+4xy-- 6x+ 4y+2= 0 6.6. -- 2xy -- 2x – 2y + 1 = 0

6.7. –x2 – y2 -- 4xy -- 4x – 2y +2= 0 6.8. --4x2 -- 4y2 +2xy +10x--10y +1=0

6.9. 2xy + 2x – 2y -- 1 = 0 6.10. x2 + y2 + 2xy -- 8x – 8y + 1 = 0

6.11. x2 + y2 + 4xy -- 8x – 4y +1 = 0 6.12. x2 + y2 -- 2xy -- 2x + 2y -- 7 = 0

6.13. 2xy + 2x + 2y -- 3 = 0 6.14. 4x2 + 4y2 +2xy+12x + 12y +1 = 0

6.15. 3x2+3y2+4xy +8x +12y + 1 = 0 6.16. x2 + y2-- 8xy -- 20x + 20y + 1 = 0

6.17. 3x2+3y2-- 2xy--6x + 2y + 1 = 0 6.18. 4xy + 4x + 4y + 1 = 0

6.19. 3x2+3y2--4xy + 6 –4y -- 7 = 0 6.20. -- 2xy -- 2x + 2y + 3 = 0

6.21. 2x2 + 2y2 +4xy +8x +8y +1 =0 6.22 x2 + y2 – 4xy +4x – 2y +1 = 0

6.23 3x2 + 3y2 – 4xy +4x +4y +1 = 0 6.24 -4xy + 8x +8y +1 = 0

Рассмотрим пример 5x2 + 5y2 -- 2xy + 10x – 2y + 1 = 0

1) Выпишем симметричную матрицу квадратичной формы

5x2 + 5y2 -- 2xy: A= [ 5 -1]

[-1 5 ]

2) Находим собственные значения:

Det (A – E) = = (5 – l)2 – 1 = 0

Корни характеристического уравнения 2 - 10 +24 = 0, очевидно, таковы: 1 = 4,

2 = 6.

3) Найдем собственные векторы матрицы А, рассматривая однородную систему:

(5 – )u1 – u2 = 0

– u1 + (5 – )u2 = 0

При 1 = 4 имеем u1 =u2 и в качестве первого собственного вектора примем

u (1) = (1; 1)T.

(Знак (Т) означает транспонирование.) Нормируем его:

e (1)= u (1) / =(1; 1)T / .

(Напомним: если u = (u1, u2)T, то | u | = .)

При 2 = 6 имеем u1 = -u2. В качестве второго собственного вектора примем u (2) = (1; -1)T и нормируем его:

e (2)= u (2) / | u (2) |=(1; -1)T / .

4) Сделаем замену координат , где матрица перехода S имеет столбцами нормированные собственные векторы e (1), e (2) , то есть .

.

В новых координатах квадратичная форма примет вид

5x2 + 5y2 -- 2xy = l1x12 + l2 y12 = 4x12 + 6y12.

Это следует из общей теории, но полезно использовать равенство

(A x, x) = (AS x 1, S x 1) = (S TAS x 1, x 1) = ( A 1 x 1, x 1), откуда

A1 =S TAS = diag(l1 , l2) = ,

и проверить результат непосредственным матричным умножением.

В новых координатах уравнение кривой примет вид:

4x12 + 6y12 + 5 (x 1+ y 1) -- (x 1 -- y 1) +1 = 0.

4) Параллельным переносом осей координат устраним линейные члены. Соберем члены, содержащие x 1 и выделим полный квадрат:
4x1 2 + 4 x1 = 4(x1 + /2)2 – 2.

Аналогично поcтупим с членами, содержащими y1:
6 y1 2 + 6 y1 =6(y1 + /2)2 – 3.

Делаем замену переменных:

x2 = x1 + /2; y2 = y1 + /2,

в результате которой уравнение кривой принимает вид 4x2 2 + 6y2 2 – 4 = 0, и после деления на свободный член получаем

-- каноническое уравнение эллипса.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: