Электроннолучевые трубки

Электронно-лучевые трубки (ЭЛТ) с электростатическим управлением, т. е. с фокусировкой и отклонением луча электрическим полем, называемые для краткости электростатическими трубками, особенно широко применяют в осциллографах.

Рис. 4.10. Принцип устройства (а) и условное графическое обозначение (б) электростатической электронно-лучевой трубки

На рис. 4.10 показаны принцип устройства электростатической трубки простейшего типа и ее изображение на схемах. Баллон трубки имеет цилиндрическую форму с расширением в виде конуса или в виде цилиндра большего диаметра. На внутреннюю поверхность основания расширенной части нанесен люминесцентный экран ЛЭ — слой веществ, способных излучать свет под ударами электронов. Внутри трубки расположены электроды, имеющие выводы, как правило, на штырьки цоколя (для упрощения на рисунке выводы проходят непосредственно через стекло баллона).

Катод К обычно бывает оксидный косвенного накала в виде цилиндра с подогревателем. Вывод катода иногда совмещен с одним выводом подогревателя. Оксидный слой нанесен на донышко катода. Вокруг катода располагается управляющий электрод, называемый модулятором (М),цилиндрической формы с отверстием в донышке. Этот электрод служит для управления плотностью электронного потока и для предварительной фокусировки его. На модулятор подается отрицательное - напряжение (обычно десятки вольт). С увеличением этого напряжения все больше электронов возвращается на катод. При некотором отрицательном напряжении модулятора трубка запирается.

Следующие электроды, также цилиндрической формы, являются анодами. В простейшем случае их два. На втором аноде А 2напряжение бывает от 500 В до нескольких киловольт (иногда 10 — 20 кВ), а на первом аноде А 1напряжение в несколько раз меньше. Внутри анодов перегородки с отверстиями (диафрагмы). Под действием ускоряющего поля анодов электроны приобретают значительную скорость. Окончательная фокусировка электронного потока осуществляется с помощью неоднородного электрического поля в пространстве между анодами, а также благодаря диафрагмам. Более сложные фокусирующие системы содержат большее число цилиндров.

Система, состоящая из катода, модулятора и анодов, называется электронным прожектором (электронной пушкой) и служит для создания электронного луча, т. е. тонкого потока электронов, летящих с большой скоростью от второго анода к люминесцентному экрану.

На пути электронного луча поставлены под прямым углом друг к другу две пары отклоняющих пластин П хи П y. Напряжение, подведенное к ним, создает электрическое поле, отклоняющее электронный луч в сторону положительно заряженной пластины. Поле пластин является для электронов поперечным. В таком поле электроны движутся по параболическим траекториям, а, выйдя из него, далее движутся по инерции прямолинейно, т. е. электронный луч получает угловое отклонение. Чем больше напряжение на пластинах, тем сильнее отклоняется луч и тем больше смещается на люминесцентном экране светящееся, так называемое электронное пятно, возникающее от ударов электронов.

Пластины П yотклоняют луч по вертикали и называются пластинами вертикального отклонения (пластинами «игрек»), а пластины П х — пластинами горизонтального отклонения (пластинами «икс»). Одна пластина каждой пары иногда соединяется с корпусом аппаратуры (шасси), т. е. имеет нулевой потенциал. Такое включение пластин называется несимметричным. Для того чтобы между вторым анодом и корпусом не создавалось электрическое поле, влияющее на полет электронов, второй анод обычно также бывает соединен с корпусом. Тогда при отсутствии напряжения на отклоняющих пластинах между ними и вторым анодом не будет никакого поля, действующего на электроны.

Жидкокристаллический дисплей (ЖК-дисплей, ЖКД; жидкокристаллический индикатор, ЖКИ; англ. Liquid crystal display, LCD) — плоский дисплей на основе жидких кристаллов, а также устройство (монитор, телевизор) на основе такого дисплея.

Простые приборы с дисплеем (электронные часы, телефоны, плееры, термометры и пр.) могут иметь монохромный или 2—5-цветный дисплей. Многоцветное изображение формируется с помощью RGB-триад.

Дисплей на жидких кристаллах используется для отображения графической или текстовой информации в компьютерных мониторах (также и в ноутбуках),телевизорах, телефонах, цифровых фотоаппаратах, электронных книгах, навигаторах, планшетах, электронных переводчиках, калькуляторах, часах и т. п., а также во многих других электронных устройствах.

На 2008 год в большинстве настольных мониторов на основе TN- (и некоторых *VA) матриц, а также во всех дисплеях ноутбуков используются матрицы с 18-битным цветом (6 бит на каждый RGB-канал), 24-битность эмулируется мерцанием с дизерингом.

LCD TFT (англ. Thin film transistor — тонкоплёночный транзистор) — разновидность жидкокристаллического дисплея, в котором используется активная матрица, управляемая тонкоплёночными транзисторами.

Устройство

Рис. 4.11. Субпиксель цветного ЖК-дисплея

Конструктивно дисплей состоит из ЖК-матрицы (стеклянной пластины, между слоями которой и располагаются жидкие кристаллы), источников света для подсветки, контактного жгута и обрамления (корпуса), чаще пластикового, с металлической рамкой жёсткости.

Каждый пиксель ЖК-матрицы состоит из слоя молекул между двумя прозрачными электродами, и двух поляризационных фильтров, плоскости поляризации которых (как правило) перпендикулярны. Если бы жидких кристаллов не было, то свет, пропускаемый первым фильтром, практически полностью блокировался бы вторым фильтром.

Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны, поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтраплоскость его поляризации поворачивается и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света, ячейку можно считать прозрачной.

Если же к электродам приложено напряжение, то молекулы стремятся выстроиться в направлении электрического поля, что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение, можно управлять степенью прозрачности.

Если постоянное напряжение приложено в течение долгого времени, жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток или изменение полярности поля при каждой адресации ячейки (так как изменение прозрачности происходит при включении тока, вне зависимости от его полярности).

Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам.

Проходящий через ячейки свет может быть естественным — отражённым от подложки (в ЖК-дисплеях без подсветки). Но чаще применяют искусственный источник света, кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения.

Таким образом, полноценный монитор с ЖК-дисплеем состоит из высокоточной электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса с элементами управления. Именно совокупность этих составляющих определяет свойства монитора в целом.

Преимущества и недостатки

Искажение цветности и контрастности изображения на ЖК-мониторе с малым углом обзора матрицы, при взгляде под малым углом к его плоскости

В настоящее время ЖК-мониторы являются основным, бурно развивающимся направлением в технологии мониторов. К их преимуществам можно отнести: малые размер и масса в сравнении с ЭЛТ. У ЖК-мониторов, в отличие от ЭЛТ, нет видимого мерцания, дефектов фокусировки лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью. Энергопотребление ЖК-мониторов в зависимости от модели, настроек и выводимого изображения может как совпадать с потреблением ЭЛТ и плазменных экранов сравнимых размеров, так и быть существенно — до пяти[1] раз — ниже. Энергопотребление ЖК-мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки (англ. backlight — задний свет) ЖК-матрицы. Во многих мониторах 2007 года для настройки пользователем яркости свечения экрана используется широтно-импульсная модуляцияламп подсветки частотой от 150 до 400 и более герц.

С другой стороны, ЖК-мониторы имеют и некоторые недостатки, часто принципиально трудноустранимые, например:

· В отличие от ЭЛТ, могут отображать чёткое изображение лишь в одном («штатном») разрешении. Остальные достигаются интерполяцией.

· Многие из ЖК-мониторов имеют сравнительно малый контраст и глубину чёрного цвета. Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения.

· Из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки) — на некоторых мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах), связанная с использованием блоков линейных ртутных ламп.

· Фактическая скорость смены изображения также остаётся ниже, чем у ЭЛТ и плазменных дисплеев. Технология overdrive решает проблему скорости лишь частично.

· Зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии.

· Массово производимые ЖК-мониторы плохо защищены от повреждений. Особенно чувствительна матрица, не защищённая стеклом. При сильном нажатии возможна необратимая деградация.

· Пиксели ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения, за исключением лазерных дисплеев, вообще не подверженных ей.

·

Плазменная панель

Рис. 4.12.Устройство плазменной панели

Газоразрядный экран (также широко применяется английская калька «плазменная панель») — устройство отображения информации, монитор, основанный на явлении свечения люминофора под воздействием ультрафиолетовых лучей, возникающих при электрическом разряде в ионизированном газе, иначе говоря в плазме.

Плазменная панель представляет собой матрицу газонаполненных ячеек, заключенных между двумя параллельными стеклянными пластинами, внутри которых расположены прозрачные электроды, образующие шины сканирования, подсветки и адресации. Разряд в газе протекает между разрядными электродами (сканирования и подсветки) на лицевой стороне экрана и электродом адресации на задней стороне.

Особенности конструкции:

· субпиксель плазменной панели обладает следующими размерами 200 мкм x 200 мкм x 100 мкм;

· передний электрод изготовляется из оксида индия и олова, поскольку он проводит ток и максимально прозрачен.

· при протекании больших токов по довольно большому плазменному экрану из-за сопротивления проводников возникает существенное падение напряжения, приводящее к искажениям сигнала, в связи с чем добавляют промежуточные проводники из хрома, несмотря на его непрозрачность;

· для создания плазмы ячейки обычно заполняются газом - неоном или ксеноном

Существующая проблема в адресации миллионов пикселей решается расположением пары передних дорожек в виде строк (шины сканирования и подсветки), а каждой задней дорожки в виде столбцов (шина адресации). Внутренняя электроника плазменных экранов автоматически выбирает нужные пиксели. Эта операция проходит быстрее, чем сканирование лучом на ЭЛТ-мониторах. В последних моделях PDP обновление экрана происходит на частотах 400—600 Гц, что не позволяет человеческому глазу замечать мерцания экрана.

Работа плазменной панели состоит из трех этапов:

1. инициализация, в ходе которой происходит упорядочивание положения зарядов среды и её подготовка к следующему этапу (адресации). При этом на электроде адресации напряжение отсутствует, а на электрод сканирования относительно электрода подсветки подается импульс инициализации, имеющий ступенчатый вид. На первой ступени этого импульса происходит упорядочивание расположения ионовой газовой среды, на второй ступени разряд в газе, а на третьей — завершение упорядочивания.

2. адресация, в ходе которой происходит подготовка пикселя к подсвечиванию. На шину адресации подается положительный импульс (+75 В), а на шину сканирования отрицательный (-75 В). На шине подсветки напряжение устанавливается равным +150 В.

3. подсветка, в ходе которой на шину сканирования подается положительный, а на шину подсветки отрицательный импульс, равный 190 В. Сумма потенциалов ионов на каждой шине и дополнительных импульсов приводит к превышению порогового потенциала и разряду в газовой среде. После разряда происходит повторное распределение ионов у шин сканирования и подсветки. Смена полярности импульсов приводит к повторному разряду в плазме. Таким образом, меняя полярность импульсов обеспечивается многократный разряд ячейки.

Один цикл «инициализация — адресация — подсветка» образует формирование одного подполя изображения. Складывая несколько подполей можно обеспечивать изображение заданной яркости и контраста. В стандартном исполнении каждый кадр плазменной панели формируется сложением восьми подполей.

Таким образом, при подведении к электродам высокочастотного напряжения происходит ионизация газа или образование плазмы. В плазме происходит емкостной высокочастотный разряд, что приводит к ультрафиолетовому излучению, которое вызывает свечение люминофора: красное, зелёное или синее. Это свечение проходя через переднюю стеклянную пластину попадает в глаз зрителя.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: