Автоматическая коррекция систематических погрешностей измерительных каналов

Одной из главных задач, решаемых при создании контрольно-управляющих систем, является обеспечение необходимой точности измерительного канала и его долговременной метрологической стабильности.

Существенной составляющей общей погрешности измерительного канала является систематическая погрешность. Для получения возможности коррекции этой погрешности необходимо знать, как она себя ведет при изменении величины измеряемого сигнала. Ее поведение определяется формой реальной функции преобразования измерительного канала, точнее тем, как отклоняется эта функция от идеальной. Идеальная характеристика измерительного канала представляет собой линейную зависимость изменения величины сигнала на выходе канала от величины сигнала на входе канала. Характер изменения реальной характеристики в общем случае может быть не линейным.

Как бы не отличалось поведение реальной функции преобразования от идеальной, все отличия можно свести к сумме трех составляющих – погрешности смещения нуля, масштабной погрешности и погрешности нелинейности (рис.1). Разделение общей погрешности преобразования на такие составляющие существенно в первую очередь с практической точки зрения – определение величины каждой составляющей и коррекция каждой из них осуществляется по-своему.

Причины появления систематической погрешности канала связаны в первую очередь с инструментальными погрешностями его составных узлов и элементов. Погрешность смещения нуля, как аддитивная погрешность, складывается из погрешностей смещения нуля операционных усилителей или иных элементов принципиальной схемы канала. Масштабная погрешность по своему поведению является мультипликативной. Она обуславливается неправильным установлением коэффициентов передачи элементов схемы канала. Для коррекции погрешности смещения нуля и масштабной погрешности (сведения их к допустимому диапазону) в стандартной схеме включения элементов и узлов, как правило, предусматривается включение корректирующих элементов – обычно подстроичных резисторов.

Коррекция осуществляется на этапе первичной настройки устройства в лабораторных условиях с использованием необходимой измерительной техники. Однако после того как устройство будет помещено в реальные условия эксплуатации проведенная коррекция погрешностей может «рассыпаться» из-за воздействия на элементы схемы различных дестабилизирующих факторов.

Р и с. 1. Разложение систематической погрешности измерительного канала на отдельные составляющие

Самым очевидным дестабилизирующим фактором является изменение температуры. Другим распространенным фактором является нестабильность источников питания. И наконец, свою лепту в систематическую погрешность может вносить еще один медленно меняющийся фактор – старение элементов. Действие этих факторов (их изменения во время работы устройства) могут приводить к тому, что погрешности, скорректированные на этапе настройки устройства, вновь будут выходить за допустимые пределы. Общий вывод, вытекающий из этого, состоит в том, что такими простыми способами обеспечить долговременную метрологическую стабильность работы устройства, по крайней мере, затруднительно. В частности, это может потребовать применения прецизионной и дорогой элементной базы, чего конечно хочется избежать.

Добиться долговременной метрологической стабильности при использовании не дорогой и распространенной элементной базы можно только при условии, что погрешности элементов будут постоянно (периодически) отслеживаться и корректироваться. Очевидно, что постоянно проводить настройки вручную в ходе работы устройства невозможно. Обеспечить это можно только осуществляя эти действия в автоматическом режиме. В свою очередь организовать такой режим можно только тогда, когда центральное ядро контрольно-измерительной системы реализовано как «интеллектуальное» – на основе микропроцессорной техники.

Рассмотрим сначала общие принципы организации автоматической коррекции систематических погрешностей канала, а затем ограничения ее проведения, вытекающие из условий реальной реализации измерительных каналов.

Линейные составляющие систематической погрешности (погрешностей смещения нуля и масштабной) определяются и корректируются с использованием достаточно простых подходов.

Постоянство погрешности смещения нуля на всем диапазоне входных воздействий позволяет для определения ее величины ограничиться проведением всего одного измерения. Как видно из рис.1, при нулевом входном воздействии отклонение реальной функции преобразования канала от идеальной определяется погрешностью смещения нуля. Поэтому для определения этой погрешности необходимо на вход канала подать входной сигнал равный нулю и измерить значение сигнала, получаемое при этом на выходе канала. Это значение будет соответствовать определяемой погрешности. Для подачи на вход канала сигнала равного нулю, нужно во входную цепь установить ключ, коммутирующий вход канала на время оценки погрешности на общую земляную шину (рис.2,а).

Р и с. 2. Построение входных цепей для возможности коррекции погрешности смещения нуля (а) и масштабной погрешности (б)

Очевидно, что коррекция погрешности смещения нуля будет сводиться в дальнейшем к вычитанию ее величины из значений на выходе канала, получаемых при проведении текущих измерений.

Линейный характер масштабной погрешности позволяют для определения ее поведения также обойтись одним измерением. Подключая ко входу измерительного канала известный по величине источник опорного напряжения и проводя измерение его величины, легко оценить во сколько раз полученный результат отличается от ожидаемого. Иными словами, поделив значение результата измерения опорной величины на истинное значение этой величины, мы получим поправочный коэффициент, который в дальнейшем можно будет использовать для коррекции результатов текущих измерений. Для подачи на вход канала сигнала, равного опорному, нужно во входную цепь установить ключ, подключающий ко входу канала на время оценки погрешности источник опорного напряжения (рис.2,б). Коррекция масштабной погрешности будет сводиться к умножению значений на выходе канала, получаемых при проведении текущих измерений, на полученный поправочный коэффициент.

Из приведенной последовательности действий видно, что определение поправочного коэффициента для коррекции масштабной погрешности необходимо проводить после определения погрешности смещения нуля и с учетом ее величины.

Конечно, если коррекции двух линейных составляющих систематической погрешности окажется достаточно, чтобы свести общую погрешность канала в допустимые приделы, можно ограничиться описанными простыми приемами уменьшения общей погрешности канала. Если же этого будет недостаточно, то нужно идентифицировать поведение нелинейной составляющей систематической погрешности, чтобы при проведении текущих измерений дополнительно учитывать еще и ее величину. Для точного определения характера нелинейного поведения систематической погрешности нужно проводить сквозной контроль – подавать на вход канала с калиброванного источника напряжений сигнал во всем возможном диапазоне его изменения и проводить оценочные измерения. В большинстве практических случаев ограничиваются измерением значений нескольких источников опорного напряжения. После чего интерполируют поведение реальной характеристики по этим нескольким реперным точкам.

Действия по определению текущих значений систематических погрешностей канала должны проводиться под управлением программы микропроцессорного ядра контрольно-управляющей систем. Контроль за уровнем систематической погрешности может производиться периодически. Период обновления оценок погрешности выбирается исходя из степени изменчивости дестабилизирующих факторов. В частности контроль может производиться все то время, пока контрольно-измерительная система не занимается текущими измерениями и обработкой результатов измерений. При этом к каждому очередному измерению будет всегда готова оценка погрешности, соответствующая моменту времени, непосредственно предшествующего моменту текущего измерения.

Проведение периодической автоматической коррекции не исключает необходимости использования в узлах измерительного канала каких-либо элементов настройки. Однако при этом они будут использоваться не для минимизации тех или иных погрешностей, а для того чтобы вывести реальную функцию преобразования канала в диапазон, где эти погрешности могут быть правильно оценены.

Например, может оказаться, что реальная функция преобразования располагается относительно идеальной так, как показано на рис. 3.а. По идеальной функции преобразования видно, что канал рассчитан на измерение положительных входных напряжений, поэтому отрицательное значение погрешности смещения нуля для реальной функции преобразования оценено быть не может. Для того чтобы погрешность смещения нуля можно было оценить необходимо с помощью аппаратных элементов настройки вывести реальную функцию преобразования полностью в положительную область выходных напряжений.

В случае, который иллюстрируется рис. 3.б. наличие масштабной погрешности приводит к тому, что реальная функция преобразования находится выше идеальной. При подаче на вход канала опорного напряжения, равного максимальному входному напряжению, масштабную погрешность оценить не получится – на выходе канала напряжение, которое можно оценить, будет ограничиваться уровнем, соответствующим конечной точке шкалы идеальной функции преобразования. Выходом из этой ситуации является или выбор меньшего опорного напряжения или смещение реальной функции преобразования ниже идеальной. Смещение реальной функции преобразования должно осуществляться с помощью аппаратных элементов настройки.

а б

Р и с. 3. Варианты расположения идеальной и реальной функций преобразования измерительного канала относительного друг друга

Отметим, что выбор поправочного коэффициента для коррекции масштабной погрешности может осуществляться с учетом вида нелинейной составляющей систематической погрешности. Например, выбирая наклон реальной функции преобразования относительно идеальной, нетрудно добиться того чтобы погрешности нелинейности «располовинились» (рис. 4) и тем самым отклонения реальной функции преобразования относительно идеальной были сведены к минимальным.

Р и с. 4. Минимизация нескорректированной нелинейной составляющей систематической погрешности.

Погрешности нелинейности будут при этом разного знака, а их абсолютные значения по величине меньше.

Кроме систематических погрешностей, рассмотренных выше, в измерительных каналах приходится иметь дело со случайными погрешностями. Поведение систематических и случайных погрешностей различно, поэтому отличаются и методы их коррекции. Известно, что при постоянстве во времени измеряемой величины наиболее эффективным методом уменьшения случайных погрешностей является проведение многократных изменений с последующим усреднением результатов. При этом погрешность среднего значения результата измерения уменьшается в раз, где n – число измерений.

Значительные трудности возникают при уменьшении случайной погрешности при измерении изменяющейся во времени величины. При этом для получения наилучшей оценки измеряемой величины применяют процедуру фильтрации. В зависимости от вида используемых преобразований различают линейную и нелинейную фильтрацию, где реализация отдельных процедур может быть осуществлена как аппаратными, так и программными средствами.

Фильтрация может применяться не только для подавления помех, наводящихся на входные цепи передачи аналогового сигнала, а при необходимости и для ограничения спектра входного и восстановления спектра выходного сигнала (об этом уже говорилось ранее). При необходимости могут применяться фильтры с перестраиваемой частотой среза.

Применение автоматической коррекции систематических погрешностей можно рассматривать как проведение адаптации канала к его собственному состоянию. Применение современной элементной базы позволяет сегодня реализовывать входные цепи, адаптирующиеся к характеристикам входного сигнала, в частности, к его динамическому диапазону. Для такой адаптации необходим входной усилитель с управляемым коэффициентом передачи. Если по результатам предшествующих измерений удалось установить, что динамический диапазон сигнала мал по сравнению с диапазоном входного сигнала АЦП, то коэффициент усиления усилителя увеличивают до тех пор, пока динамический диапазон сигнала не будет соответствовать диапазону работы АЦП. Таким образом удается добиться минимизации погрешности дискретизации сигнала и, следовательно, повышения точности проведения измерений. Изменение коэффициента усиления сигнала на входе учитывается при этом программно при обработке результатов измерений цифровым контроллером.

Критерии оценки соответствия динамического диапазона сигнала и диапазона работы АЦП будут рассмотрены далее, будут рассмотрены и способы адаптации входного канала к частотным свойствам входного сигнала.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: