double arrow

Режимы кипения жидкости.

ТЕПЛООБМЕН ПРИ КИПЕНИИ И КОНДЕНСАЦИИ

ТЕПЛООБМЕН ПРИ КИПЕНИИ

Кипением называется процесс интенсивного парообразования, происходящего во всем объеме жидкости, находящейся при температуре насыщения или несколько перегретой относительно температуры насыщения, с образованием паровых пузырей. В процессе фазового превращения поглощается теплота парообразования. Процесс кипения обычно связан с подводом теплоты к кипящей жидкости.

Режимы кипения жидкости.

Различают кипение жидкостей на твердой поверхности теплообмена, к которой извне подводится теплота, и кипение в объеме жидкости.

При кипении на твердой поверхности образования паровой фазы наблюдается в отдельных местах этой поверхности. При объемном кипении паровая фаза возникает самопроизвольно (спонтанно) непосредственно в объеме жидкости в виде отдельных пузырьков пара. Объемное кипение может происходить лишь при более значительном перегреве жидкой фазы относительно температуры насыщения при данном давлении, чем кипение на твердой поверхности. Значительный перегрев может быть получен, например, при быстром сбросе давления в системе. Объемное кипение может иметь место при наличии в жидкости внутренних источников тепла.

В современной энергетике и технике обычно встречаются процессы кипения на твердых поверхностях нагрева (поверхности труб, стенки каналов и т.п.). Этот вид кипения в основном и рассматривается далее.

Механизм теплообмена при пузырьковом кипении отличается от механизма теплоотдачи при конвекции однофазной жидкости наличием дополнительного переноса массы вещества и теплоты паровыми пузырями из пограничного слоя в объем кипящей жидкости. Это приводит к высокой интенсивности теплоотдачи при кипении по сравнению с конвекцией однофазной жидкости.

Для возникновения процесса кипения необходимо выполнение двух условий: наличие перегрева жидкости относительно температуры насыщения и наличие центров парообразования.

Перегрев жидкости имеет максимальную величину непосредственно у обогреваемой поверхности теплообмена. На ней же находятся центры парообразования в виде неровностей стенки, пузырьков воздуха, пылинок и др. Поэтому образование пузырьков пара происходит непосредственно на поверхности теплообмена.

Рисунок 3.1 – режимы кипения жидкости в неограниченном объеме: а) -пузырьковый; б) – переходный; в) - пленочный

На рис. 3.1. схематически показаны режимы кипения жидкости в неограниченном объеме. При пузырьковом режиме кипения (рис. 3.1,а) по мере увеличения температуры поверхности нагрева tc и соответственно температурного напора число действующих центров парообразования растет, процесс кипения становится все более интенсивным. Паровые пузырьки периодически отрываются от поверхности и, всплывая к свободной поверхности, продолжают расти в объеме.

При повышении температурного напора Δ t значительно возрастает поток теплоты, который отводится от поверхности нагрева к кипящей жидкости. Вся эта теплота в конечном счете расходуется на образование пара. Поэтому уравнение теплового баланса при кипении имеет вид:

, (3-1)

где Q — тепловой поток, Вт; r — теплота фазового перехода жидкости, Дж/кг; Gп — количество пара, образующегося в единицу времени в результате кипения жидкости и отводимого от ее свободной поверхности, кг/с.

Тепловой поток Q при увеличении температурного напора Δ t растет не беспредельно. При некотором значении Δ t он достигает максимального значения (Рис. 3.2), а при дальнейшем повышении Δ t начинает уменьшаться.

Рисунок 3.2 – Зависимость плотности теплового потока q

от температурного напора Δ t при кипении воды в большом объеме при атмосферном давлении: 1- подогрев до температуры насыщения; 2 – пузырьковый режим; 3 – переходный режим; 4 – пленочный режим.

Дать участки 1 2 3 и 4

Пузырьковыйрежим кипения имеет место на участке 2 (Рис. 3.2) до достижения максимального теплоотвода в точке q кр1, называемой первой критической плотностью теплового потока. Для воды при атмосферном давлении первая критическая плотность теплового потока составляет Вт/м2; соответствующее критическое значение температурного напора Вт/м2. (Эти значения относятся к условиям кипения воды при свободном движении в большом объеме. Для других условий и других жидкостей значения будут иными).

При бóльших Δ t наступает переходный режим кипения (рис. 3.1, б). Он характеризуется тем, что как на самой поверхности нагрева, так и вблизи нее пузырьки непрерывно сливаются между собой, образуются большие паровые полости. Из-за этого доступ жидкости к самой поверхности постепенно все более затрудняется. В отдельных местах поверхности возникают «сухие» пятна; их число и размеры непрерывно растут по мере увеличения температуры поверхности. Такие участки как бы выключаются из теплообмена, так как отвод теплоты непосредственно к пару происходит существенно менее интенсивно. Это и определяет резкое снижение теплового потока (участок 3 на Рис. 3.2) и коэффициента теплоотдачи в области переходного режима кипения.

Наконец, при некотором температурном напоре вся поверхность нагрева покрывается сплошной пленкой пара, оттесняющей жидкость от поверхности. С этого момента имеет место пленочный режим кипения (рис. 3.1, в). При этом перенос теплоты от поверхности нагрева к жидкости осуществляется путем конвективного теплообмена и излучения через паровую пленку. Интенсивность теплообмена в режиме пленочного кипения достаточно низкая (участок 4 на рис. 3.2). Паровая пленка испытывает пульсации; пар, периодически накапливающийся в ней, отрывается в виде больших пузырей. В момент наступления пленочного кипения тепловая нагрузка, отводимая от поверхности, и соответственно количество образующегося пара имеют минимальные значения. Это соответствует на рис. 3.2 точке q кр2, называемой второй критической плотностью теплового потока. При атмосферном давлении для воды момент начала пленочного кипения характеризуется температурным напором ≈150 °С, т. е. температура поверхности tc составляет примерно 250°С. По мере увеличения температурного напора все большая часть теплоты передается за счет теплообмена излучением.

Все три режима кипения можно наблюдать в обратном порядке, если, например, раскаленное массивное металлическое изделие опустить в воду для закалки. Вода закипает, вначале охлаждение тела идет относительно медленно (пленочное кипение), затем скорость охлаждения быстро нарастает (переходный режим), вода начинает периодически смачивать поверхность, и наибольшая скорость снижения температуры поверхности достигается в конечной стадии охлаждения (пузырьковое кипение). В этом примере кипение протекает в нестационарных условиях во времени.

На рис. 3.3 показана визуализация пузырькового и пленочного режимов кипения на электрически обогреваемой проволоке, находящейся в воде.

А б

рис. 3.3 визуализация пузырькового и пленочного режимов кипения на электрически обогреваемой проволоке: а) - пузырьковый и б) - пленочный режим кипения.

На практике часто встречаются также условия, когда к поверхности подводится фиксированный тепловой поток, т. е. q = const. Это характерно, например, для тепловых электрических нагревателей, тепловыделяющих элементов ядерных реакторов и, приближенно, в случае лучистого обогрева поверхности от источников с весьма высокой температурой. В условиях q = const температура поверхности tc и соответственно температурный напор Δ t зависят от режима кипения жидкости. Оказывается, что при таких условиях подвода теплоты переходный режим стационарно существовать не может. Вследствие этого процесс кипения приобретает ряд важных особенностей. При постепенном повышении тепловой нагрузки q температурный напор Δ t возрастает в соответствии с линией пузырькового режима кипения на рис. 3.2, и процесс развивается так же, как это было описано выше. Новые условия возникают тогда, когда подводимая плотность теплового потока достигает значения, которое соответствует первой критической плотности теплового потока q кр1. Теперь при любом незначительном (даже случайном) повышении величины q возникает избыток между количеством подводимой к поверхности теплоты и той максимальной тепловой нагрузкой q кр1, которая может быть отведена в кипящую жидкость. Этот избыток (qq кр1) вызывает увеличение температуры поверхности, т. е. начинается нестационарный разогрев материала стенки. Развитие процесса приобретает кризисный характер. За доли секунды температура материала поверхности нагрева возрастает на сотни градусов, и лишь при условии, что стенка достаточно тугоплавкая, кризис заканчивается благополучно новым стационарным состоянием, отвечающим области пленочного кипения при весьма высокой температуре поверхности. На рис. 3.2 этот кризисный переход от пузырькового режима кипения к пленочному условно показан стрелкой как «перескок» с кривой пузырькового кипения на линию пленочного кипения при той же тепловой нагрузке q кр1. Однако обычно это сопровождается расплавлением и разрушением поверхности нагрева (ее пережогом).

Вторая особенность состоит в том, что если произошел кризис и установился пленочный режим кипения (поверхность не разрушилась), то при снижении тепловой нагрузки пленочное кипение будет сохраняться, т. е. обратный процесс теперь будет происходить по линии пленочного кипения (рис. 3.2). Лишь при достижении q кр2 жидкость начинает вновь в отдельных точках периодически достигать (смачивать) поверхность нагрева. Отвод теплоты растет и превышает подвод теплоты, вследствие чего возникает быстрое охлаждение поверхности, которое также носит кризисный характер. Происходит быстрая смена режимов, и устанавливается стационарное пузырьковое кипение. Этот обратный переход (второй кризис) на рис. 3.2 также условно показан стрелкой как «перескок» с кривой пленочного кипения на линию пузырькового кипения при q = q кр2.

Итак, в условиях фиксированного значения плотности теплового потока q, подводимого к поверхности нагрева, оба перехода от пузырькового к пленочному и обратно носят кризисный характер. Они происходят при критических плотностях теплового потока q кр1 и q кр2 соответственно. В этих условиях переходный режим кипения стационарно существовать не может, он является неустойчивым.

На практике широко применяются методы отвода теплоты при кипении жидкости, движущейся внутри труб или каналов различной формы. Так, процессы генерации пара осуществляются за счет кипения воды, движущейся внутри котельных труб. Теплота к поверхности труб подводится от раскаленных продуктов сгорания топлива за счет излучения и конвективного теплообмена.

Для процесса кипения жидкости, движущейся внутри ограниченного объема трубы (канала), описанные выше условия остаются в силе, но вместе с этим появляется ряд новых особенностей.

Вертикальная труба. Труба или канал представляет собой ограниченную систему, в которой при движении кипящей жидкости происходят непрерывное увеличение паровой и уменьшение жидкой фаз. Соответственно этому изменяется и гидродинамическая структура потока, как по длине, так и по поперечному сечению трубы. Соответственно изменяется и теплоотдача.

Наблюдается три основные области с разной структурой потока жидкости по длине вертикальной трубы при движении потока снизу вверх (рис. 3.4): I – область подогрева (экономайзерный участок, до сечения трубы, где Тсн); II – область кипения (испарительный участок, от сечения, где Тсн, iж < i н, до сечения, где Тсн, iсмi н); III – область подсыхания влажного пара.

Испарительный участок включает в себя области с поверхностным кипением насыщенной жидкости.

На рис. 3.4 схематично показан структура такого потока. Участок 1 соответствует подогреву однофазной жидкости до температуры насыщения (экономайзерный участок). На участке 2 происходит поверхностное пузырьковое кипение, при котором теплоотдача увеличивается по сравнению с участком 2. На участке 3 имеет место эмульсионный режим, при котором двухфазный поток состоит из жидкости и равномерно распределенных в ней сравнительно небольших пузырьков, которые в дальнейшем сливаются, образуя крупные пузыри-пробки, соизмеримые с диаметром трубы. При пробковом режиме (участок 4) пар движется в виде отдельных крупных пузырей-пробок, разделенных прослойками парожидкостной эмульсии. Далее на участке 5 в ядре потока сплошной массой движется влажный пар, а у стенки трубы – тонкий кольцевой слой жидкости. Толщина этого слоя жидкости постепенно уменьшается. Данный участок соответствует кольцевому режиму кипения, который заканчивается при исчезновении жидкости на стенке. На участке 6 происходит подсушивания пара (повышение степени сухости пара). Поскольку процесс кипения завершен, то теплоотдача снижается. В дальнейшем, вследствие увеличения удельного объема пара, скорость пара увеличивается, что ведет к некоторому увеличению теплоотдачи.

Рис.3.4 – Структура потока при кипении жидкости внутри вертикальной трубы

.

Увеличение скорости циркуляции при заданных qс , длине трубы и температуры на входе приводит к уменьшению участков с развитым кипением и увеличению длины экономайзерного участка; с увеличением qс при заданной скорости, наоборот, длина участков с развитым кипением увеличивается, а длина экономайзерного участка уменьшается.

Горизонтальные и наклонные трубы. При движении двухфазного потока внутри труб, расположенных горизонтально или с небольшим наклоном, кроме изменения структуры потока по длине, имеет место значительное изменение структуры по периметру трубы. Так, если скорость циркуляции и содержания пара в потоке невелики, наблюдается расслоение двухфазного потока на жидкую фазу, движущуюся в нижней части трубы, и паровую, движущуюся в верхней части ее (рис. 3.5, а). При дальнейшем увеличении паросодержания и скорости циркуляции поверхность раздела между паровой и жидкой фазами приобретает волновой характер, и жидкость гребнями волн периодически смачивает верхнюю часть трубы. С дальнейшим увеличение содержания пара и скорости волновое движение на границе раздела фаз усиливается, что приводит к частичному выбрасыванию жидкости в паровую область. В результате двухфазный поток приобретает характер течения, сначала близкий к пробковому, а потом – к кольцевому.

Рис. 3.5 – Структура потока при кипении жидкости внутри горизонтальной трубы.

а – расслоенный режим кипения; б – стержневой режим; 1 – пар; 2 – жидкость.

При кольцевом режиме по всему периметру трубы устанавливается движение тонкого слоя жидкости, в ядре потока перемещается парожидкостная смесь (рис. 3.5, б). Однако и в этом случае полной осевой симметрии в структуре потока не наблюдается.

если интенсивность подвода теплоты к стенкам трубы достаточно высока, то процесс кипения может происходить также при течении в трубе, недогретой до температуры насыщения жидкости, Такой процесс возникает, когда температура стенки tc превышает температуру насыщения ts. он охватывает пограничный слой жидкости непосредственно у стенки. Паровые пузырьки, попадающие в холодное ядро потока, быстро конденсируются. Этот вид кипения называют кипением с недогревом.

Отвод теплоты в режиме пузырькового кипения является одним из наиболее совершенных методов охлаждения поверхности нагрева. Он находит широкое применение в технических устройствах.

3.1.2. Теплообмен при пузырьковом кипении.

Наблюдения показывают, что при увеличении температурного напора Δ t = tc - ts, а также давления р на поверхности нагрева увеличивается число активных центров парообразования. В итоге все большее количество пузырьков непрерывно возникает, растет и отрывается от поверхности нагрева. Вследствие этого увеличиваются турбулизация и перемешивание пристенного пограничного слоя жидкости. В процессе своего роста на поверхности нагрева пузырьки также интенсивно забирают теплоту из пограничного слоя. Все это способствует улучшению теплоотдачи. В целом процесс пузырькового кипения носит довольно хаотичный характер.

Исследования показывают, что на технических поверхностях нагрева число центров парообразования зависит от материала, строения и микрошероховатости поверхности, наличия неоднородности состава поверхности и адсорбированного поверхностью газа (воздуха). Заметное влияние оказывают различные налеты, окисные пленки, а также любые другие включения.

Наблюдения показывают, что в реальных условиях центрами парообразования обычно служат отдельные элементы неровности и микрошероховатости поверхности (предпочтительно различные углубления и впадины).

Обычно на новых поверхностях число центров парообразования выше, чем на тех же поверхностях после длительного кипения. В основном это объясняется наличием адсорбированного поверхностью газа. Со временем газ постепенно удаляется, он смешивается с паром, находящимся в растущих пузырьках, и выносится в паровое пространство. Процесс кипения и теплоотдача стабилизируются во времени и по интенсивность.

На условия образования паровых пузырьков большое влияние оказывает поверхностное натяжение на границе раздела жидкости и пара.

Вследствие поверхностного натяжения давление пара внутри пузырька р п выше давления окружающей его жидкости р ж. Их разность определяется уравнением Лапласа

(3-1)

где σ— поверхностное натяжение; R — радиус пузырька.

Уравнение Лапласа выражает условие механического равновесия. Оно показывает, что поверхностное натяжение наподобие упругой оболочки «сжимает» пар в пузырьке, причем тем сильнее, чем меньше его радиус R.

Зависимость давления пара в пузырьке от его размера накладывает особенности на условие теплового или термодинамического равновесия малых пузырьков. Пар в пузырьке и жидкость на его поверхности находятся в равновесии, если поверхность жидкости имеет температуру, равную температуре насыщения при давлении пара в пузырьке, t s (р п). Эта температура выше, чем температура насыщения при внешнем давлении в жидкости t s (р ж). Следовательно, для осуществления теплового равновесия жидкость вокруг пузырька должна быть перегрета на величину t s (р п)- t s (р ж).

Следующая особенность заключается в том, что это равновесие оказывается неустойчивым. Если температура жидкости несколько превысит равновесное значение, то произойдет испарение части жидкости внутрь пузырьков и его радиус увеличится. При этом согласно уравнению Лапласа давление пара в пузырьке понизится. Это приведет к новому отклонению от равновесного состояния. Пузырек начнет неограниченно расти. Так же при незначительном понижении температуры жидкости часть пара сконденсируется, размер пузырька уменьшится, давление пара в нем повысится. Это повлечет за собой дальнейшее отклонение от равновесных условий, теперь уже в другую сторону. В итоге пузырек полностью сконденсируется и исчезнет.

Следовательно, в перегретой жидкости не любые случайно возникшие маленькие пузырьки обладают способностью к дальнейшему росту, а только те, радиус которых превышает значение, отвечающее рассмотренным выше условиям неустойчивого механического и теплового равновесия. Это минимальное значение радиуса пузырька R min часто называют также критическим радиусом парового зародыша. Величина R min зависит от степени перегрева жидкости, т. е. от разности температур , где t s - температура насыщения при давлении в жидкости. Выражение для минимального радиуса парового пузырька можно получить из уравнения Лапласа:

,

если учесть при этом, что разность давлений между паром и жидкостью для такого пузырька согласно условию теплового равновесия составляет:

где — производная давления по температуре на линии насыщения.

Таким образом, имеем:

(3-2)

или с учетом зависимости давления насыщенного пара от кривизны поверхности раздела

(3-2а)

где производная представляет собой физическую характеристику данного вещества, она определяется уравнением Клапейрона — Клаузиса

(3-3)

т. е. выражается через другие физические постоянные: теплоту фазового перехода r, плотности пара ρп и жидкости ρж и абсолютную температуру насыщения Ts.

Уравнение (3-2) показывает, что если в отдельных точках поверхности нагрева появляются паровые зародыши, то способностью к дальнейшему самопроизвольному росту обладают лишь те из них, радиус кривизны которых превышает значение Rmin. Поскольку с ростом Δ t величина Rmin снижается, уравнение (3-2) объясняет

экспериментально наблюдаемый факт увеличения числа центров парообразования при повышении температуры поверхности.

Увеличение числа центров парообразования с ростом давления также связано с уменьшением Rmin, ибо при повышении давления величина p′s растет, а σ снижается. Расчеты показывают, что для воды, кипящей при атмосферном давлении, при Δ t = 5°С Rmin = 6,7 мкм, а при Δ t = 25°С Rmin = 1,3 мкм.

Наблюдения, проведенные с применением скоростной киносъемки, показывают, что при фиксированном режиме кипения частота образования паровых пузырьков оказывается неодинаковой как в различных точках поверхности, так и во времени. Это придает процессу кипения сложный статистический характер. Соответственно скорости роста и отрывные размеры различных пузырьков также характеризуются случайными отклонениями около некоторых средних величин.

После достижения пузырьком определенного размера он отрывается от поверхности. Отрывной размер определяется в основном взаимодействием сил тяжести, поверхностного натяжения и инерции. Последняя величина представляет собой динамическую реакцию, возникающую в жидкости вследствие быстрого роста пузырьков в размерах. Обычно эта сила препятствует отрыву пузырьков. Кроме того, характер развития и отрыва пузырьков в большой мере зависит от того, смачивает жидкость поверхность или не смачивает. Смачивающая способность жидкости характеризуется краевым углом θ, который образуется между стенкой и свободной поверхностью жидкости. Чем больше θ, тем хуже смачивающая способность жидкости. Принято считать, что при θ <90° (рис. 3.6, а), жидкость смачивает поверхность, а при θ >90° - не смачивает. Значение краевого угла зависит от природы жидкости, материала, состояния и чистоты поверхности. Если кипящая жидкость смачивает поверхность нагрева, то паровые пузырьки имеют тонкую ножку и от поверхности отрываются легко (рис. 3.7, а). Если же жидкость не смачивает поверхность, то паровые пузырьки имеют широкую ножку (рис. 3.7, б) и отрываются по перешейку, или парообразование происходит по всей поверхности.

       
   
 

Обычные жидкости: вода, спирты, бензол, ацетон и др.— смачивают чистые металлические поверхности нагрева. Смачивающая способность воды значительно снижается, если металлическая поверхность покрыта жирной пленкой. Примером несмачивающей жидкости может служить ртуть (θ ≈ 140°).

При кипении обычных жидкостей на металлических поверхностях нагрева средние отрывные диаметры пузырьков D 0 при атмосферном давлении составляют примерно 1—2 мм. При увеличении давления значения D 0 уменьшаются. На рис. 3.8 представлены значения D 0 при кипении воды в большом объеме на горизонтальной поверхности [32, 119] в диапазоне давлений (0,2…100)·105 Па. Резкое увеличение D 0 при снижении давления ниже атмосферного объясняется возрастанием влияния силы инерции, препятствующей отрыву пузырьков.

При увеличении температурного напора (или теплового потока) постепенно начинает развиваться процесс слияния отдельных пузырьков с образованием больших вторичных пузырей и целых паровых «столбов». Около поверхности среднее объемное содержание пара возрастает до 60—80%. Однако, как показывают исследования, в очень тонком поверхностном слое у самой стенки по-прежнему преобладает жидкая фаза. Термическое сопротивление этого слоя в основном и определяет интенсивность теплоотдачи при развитом пузырьковом кипении. Эффективная толщина слоя по мере увеличения тепловой нагрузки снижается, что приводит к увеличению интенсивности теплоотдачи.

Коэффициент теплоотдачи α при кипении принято относить к температурному напору

(3-4)

Экспериментальные данные показывают, что интенсивность теплоотдачи растет при увеличении плотности теплового потока и давления. Эта закономерность характерна для любых жидкостей, смачивающих поверхность нагрева.

Исследования показывают, что закономерность теплоотдачи при развитом пузырьковом кипении практически не зависит от размеров и формы теплоотдающей поверхности. Вместе с тем опыты обнаруживают, что интенсивность теплообмена может меняться в зависимости от состояния, материала и чистоты поверхности нагрева. Влияние этих факторов на теплоотдачу проявляется, по-видимому, в основном за счет изменения плотности центров парообразования. Улучшение теплоотдачи наблюдалось в ряде опытов при увеличении микрошероховатости металлической поверхности, а также при увеличении теплопроводности материала стенки. Имеются данные, показывающие, что выпадение на поверхность нагрева в незначительном количестве налетов и окислов также может способствовать некоторому увеличению теплоотдачи. Однако значительное загрязнение поверхности снижает интенсивность передачи теплоты за счет появления дополнительного термического сопротивления слоя загрязнений. Известно так же. что при увеличении краевого угла θ (в области смачивания) теплообмен увеличивается. При очень чистых поверхностях и чистой жидкости отмечается снижение теплоотдачи.

Обычно на практике перечисленные выше поверхностные эффекты проявляются одновременно. Это затрудняет точное определение теплоотдачи. Опыты показывают, что при фиксированных q и р значения α из-за различия в поверхностных условиях могут ощутимо изменяться.

Теплоотдача на погруженных поверхностях при развитом кипении не зависит от формы и ориентации теплоотдающей поверхности (если реализованы условия беспрепятственного отвода пузырьков пара).

Для расчета теплоотдачи могут использоваться различные эмпирические зависимости.

Для воды в диапазоне давлений примерно от 1 до 40 бар (р/р кр≤0,18) получены зависимости

α = 3,0 q 0,7 p 0,15; (3-5)

α = 38,7Δ t 2,33 p 0,5, (3-6)

в которые q и p следует подставлять соответственно в ваттах на квадратный метр и в барах.

Приведенная ниже зависимость обобщает большое число опытных данных по теплоотдаче при кипении различных жидкостей (включая жидкие металлы):

(3-7)

где при <0,01 С =0,625; n =0,5 а при ≥0,01 С =0,125; n =0,65

; ; ;

; ;

Физические параметры, входящие в числа подобия, берутся при t s.

при вынужденном движений жидкости теплоотдача при развитом пузырьковом кипении может быть рассчитана с использованием следующей зависимости:

(3-8)

где ps — бар; q — Вт/м2. Формула применима в диапазоне давлений от 1 до 200 бар.

В области весьма низких давлений (ps <l·105 Па) процесс кипения приобретает ряд новых особенностей. Основные из них состоят в появлении нерегулярного, пульсирующего во времени процесса вскипания, в возникновении значительных перегревов жидкости и появления звуковых эффектов (стуков). Интенсивность средней теплоотдачи при этом заметно снижается.

Своеобразные закономерности проявляются при кипении жидкости в тонких пленках (толщиной менее 1 мм), создаваемых на поверхности за счет ее орошения потоком капель [106, 110].

В целом приведенные данные показывают, что для процесса пузырькового кипения характерны высокая интенсивность теплоотдачи и возможность отвода с единицы поверхности весьма значительных потоков теплоты. Последние величины ограничены значением первой критической плотности теплового потока q кр1.

Опыты показывают, что величины q кр1 при кипении жидкости в большом объеме практически не зависят от размера поверхности, если обеспечены условия для свободного отвода пара от поверхности нагрева. Когда отвод пара затруднен (например, горизонтальная плита, обращенная греющей стороной вниз), значения q кр1 существенно уменьшаются. То же наблюдается в случае кипения жидкости, которая не смачивает поверхность нагрева. Улучшение условий смачивания приводит к увеличению критических тепловых потоков [3]. В ряде опытов отмечалось повышение критических потоков при увеличении шероховатости поверхности, а также при выпадении налетов и накипи на поверхности.

При кипении жидкости внутри труб и каналов в условиях вынужденного движения интенсивность отвода пара от поверхности и соответственно величина q кр1 зависят от скорости движения и характера турбулентного перемешивания в потоке. Большое влияние в этих условиях на q кр1 оказывает также паросодержание самого потока. Опыты показывают, что при увеличении паросодержания значения q кр1 уменьшаются. При кипении с недогревом вследствие конденсации паровых пузырьков около теплоотдающей поверхности благоприятные условия для подвода жидкости к поверхности нагрева сохраняются вплоть до очень высоких тепловых потоков. Поэтому значения q кр1 при кипении с недогревом обычно оказываются достаточно большими, причем с увеличением степени недогрева (определяемого величиной где tж — средняя температура жидкости в данном сечении) q кр1 увеличивается.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: