Параллельный контур

Лабораторная работа № 5

КОЛЕБАТЕЛЬНЫе КОНТУРы

Цель работы

Изучение частотных и переходных характеристик параллельного и последовательного колебательных контуров.

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Параллельный контур

 
 

Простой параллельный колебательный контур состоит из параллельного соединения катушки индуктивности и конденсатора, которые на схеме (рис. 5.1, а) изображены как индуктивность (L) и ёмкость (C) со своими сопротивлениями потерь (r L и r C).

Резонансная частота , характеристическое сопротивление , эквивалентное сопротивление потерь и добротность контура рассчитываются по формулам

(5.1)

Комплексное входное сопротивлением контура определяет его свойства в частотной области.

, (5.2)

где – обобщенная расстройка;

– резонансное сопротивление (сопротивление колебательного контура на резонансной частоте).

Нормированной передаточной характеристикой резонансного контура называется отношение

. (5.3)

На рис. 5.2 построены АЧХ () и ФЧХ () параллельного контура. Из графика АЧХ следует, что контур можно использовать в качестве полосового фильтра. Нижняя и верхняя граничные частоты полосы пропускания фильтра вычисляются по уровню АЧХ. Полоса пропускания контура зависит от его добротности

. (5.4)

Свойства цепи во временной области определяются переходной характеристикой h (t). В нашем случае h (t) представляет собой реакцию контура на единичный скачёк тока, имеет размерность сопротивления и может быть найдена как обратное преобразование Лапласа от .

Рис. 5.2. Частотные характеристики Рис.5.3. Переходная характеристика

Для контура с малыми потерями () нормированная переходная характеристика

. (5.5)

Коэффициент затухания и постоянная времени контура

. (5.6)

На рис. 5.3 изображен график . Длительность переходного процесса (t у), т.е. время затухания в контуре собственных колебаний, можно определить графически по уровню 0.05 или вычислить по формуле

. (5.7)

Кроме того, скорость затухания собственных колебаний можно оценить отношением амплитуд переходного процесса через период (декрементом затухания ). Логарифм этого отношения называется логарифмическим декрементом затухания

. (5.8)

Подключение параллельно контуру сопротивление шунта (рис. 5.3, б) уменьшит входное сопротивление контура на резонансной частоте

. (5.9)

, пересчитанное из параллельной ветви в последовательную, (рис. 5.1, б) называется вносимым сопротивлением

, (5.10)

Появление в контуре дополнительного сопротивления потерь изменит его частотные и временные свойства. Численно изменения можно оценить с помощью эквивалентной добротности и эквивалентного коэффициента затухания

(5.11а)

. (5.11б)

Для ослабления влияния сопротивлений, шунтирующих контур, используют сложные контуры с разделенными реактивными элементами. Их называют контурами с частичным подключением (ЧП). Например, с частичным подключением индуктивности (рис. 5.1, в).

При частичном подключении резонансная частота не меняется, а входное сопротивление контура уменьшается, так как используется только часть реактивного элемента (например, L 2 на рис. 5.1, в)

, (5.12)

где – коэффициент включения; – полная индуктивность.

Входное сопротивление при шунтировании частично подключенного контура равно

. (5.13)

Важно! Вносимое сопротивление потерь при шунтирования только части контура уменьшается в p2 раз

, (5.14)

т.е. влияние шунта на свойства контура ослабляется.

Амплитуда напряжения на полном , полном шунтированном , частично подключённом и частично подключённом шунтированном контуре при подключении к нему тока амплитудой

(5.15а)

. (5.15б)

Важно подчеркнуть. При подключении к источнику тока только части контура выходное напряжение, снимаемое с этой части , изменяется в p2 раз, а снимаемое с полного контура - в p раз т.к.

(5.16)


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: