Как РНК решала энергетический вопрос

Чтобы два рибонуклеотида соединились вместе, к одному из них должен быть присоединен дополнительный фосфат (или сразу два). Получившаяся молекула - рибонуклеотид с лишним фосфатом - содержит в себе большое количество энергии. Эта энергия, при наличии подходящих катализаторов, может быть использована для выполнения разных полезных "работ". В том числе для соединения двух рибонуклеотидов в одну молекулу – маленькую РНК. Рибонуклеотиды с дополнительными фосфатами первоначально использовались, скорее всего, только как "строительные кирпичики" при синтезе РНК. Кирпичики, надо сказать, очень удобные – ведь они включают в себя не только строительный материал, но еще и энергию, необходимую для выполнения строительных работ! Впоследствии они стали использоваться для тысяч других важных дел – везде, где для выполнения какой-то работы требуется энергия. Все живое и по сей день пользуется фосфорилированными рибонуклеотидами как универсальными поставщиками энергии при выполнении энергоемких задач. Самая известная из этих "энергетических" молекул – АТФ (аденозинтрифосфат). Это обычный рибонуклеотид, к которому присоединены два дополнительных фосфата. АТФ – одновременно и источник энергии для множества энергоемких реакций, и один из кирпичиков для синтеза РНК. Так земная преджизнь нашла универсальное решение сразу двух задач: запасания энергии в удобной форме и синтеза РНК – главных молекул жизни. Между прочим, другие ключевые "энергетические" молекулы живой клетки – НАД, НАДФ и ФАД – представляют собой пары сцепленных рибонуклеотидов (одного стандартного и одного "неклассического"). Это еще одно наследие РНК-мира.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: