Симметрирование синусно-косинусных поворотных трансформаторов

С целью устранения искажающего действия поперечного потока Фq, осуществляют так называемое с и м м е т р и р о в а н и е поворотного трансформатора. Оно может быть первичным и вторичным.

П е р в и ч н о е симметрирование выполняется со стороны статора и заключается в замыкании компенсационной обмотки на какое-то сопротивление или накоротко (рис. 6.4). Условием первичного симметрирования является равенство (симметрия) полных сопротивлений цепи обмотки возбуждения и цепи компенсационной обмотки: Zис+ Zв= Zк + Zкн, где Zис - сопротивление источника. Поскольку Zв= Zк, условие симметрии выливается в равенство Zис= Zкн. Если принять, что внутренне сопротивление мощного источника равно нулю Zис = 0, то и Zкн= 0, т.е. первичное симметрирование сводится к замыканию компенсационной обмотки накоротко.

Сущность первичного симметрирования состоит в том, что поперечный поток Фsq, пульсируя по оси компенсационной обмотки, индуцирует в ней ЭДС и ток, который создает магнитный поток Фк, направленный встречно потоку Фsq (рис.6.4,б). В результате поток Фsqи его искажающее действие в значительной мере уменьшаются.

Рис.6.4. К вопросу о первичном симметрировании СКПТ

Достоинством первичного симметрирование является то, что при изменении нагрузки автоматически изменяется величина потока Фк, вследствие чего степень компенсации потока Фsq остается практически постоянной.

Недостатком первичного симметрирования служит зависимость тока возбуждения СКПТ от угла поворота ротора

В т о р и ч н о е симметрирование выполняется со стороны ротора в том случае, когда нагрузка подключается только к одной обмотке, например к синусной. Оно заключается в замыкании второй роторной обмотки на сопротивление Zнс (рис.6.5,а). Его сущность состоит в том, что поперечные составляющие потоков Фsq и Фcq всегда направлены встречно и при правильном выборе Zнс в значительной мере ослабляют друг друга (рис.6.5,б).

При выполнении вторичного симметрирования Fsq= Fcq или

Выразим токи роторных обмоток через ЭДС и сопротивления

При отсутствии поперечных потоков, учитывая Wsko = Wcko

Из этого уравнения следует, что для осуществления вторичного симметрирования необходимо, чтобы симметрирующее сопротивление Zсн было равно сопротивлению нагрузки Z.

Рис.6.5. К вопросу о вторичном симметрировании СКПТ

Недостаток вторичного симметрирования заключается в том, что оно практически выполнимо только при постоянной нагрузке. Достоинством служит независимость тока возбуждения от угла поворота ротора

Здесь Z2и Z - сопротивление роторной обмотки и сопротивление нагрузки, поскольку Zs = Zc и Z= Zсн.

На практике, там, где это возможно, выполняют одновременно и первичное и вторичное симметрирование СКПТ (рис.6.6), добиваясь почти полного уничтожения искажающего действия поперечного потока ротора.

Рис.6.6. Первичное и вторичное симметрирование СКПТ

ЛЕКЦИЯ 19
§ 2.3. Импульсное управление исполнительным двигателем постоянного тока

В связи с развитием полупроводниковой техники все шире применяется импульсное управление исполнительным двигателем. Суть его заключается в том, что частоту вращения двигателя регулируют не величиной постоянно подводимого напряжения, а длительностью питания двигателя номинальным напряжением. Одна из возможных схем импульсного управления приведена на рис. 2.7, а. Там же (рис. 2.7, б) показаны графики скорости при различных t.

В период, когда электронный ключ открыт, питающее напряжение полностью подается на двигатель, ток якоря увеличивается, двигатель развивает положительный момент и частота вращения возрастает; когда электронный ключ закрыт, ток под действием запаса электромагнитной энергии продолжает протекать в том же направлении но через обратный диод. При этом он уменьшается, момент двигателя уменьшается, угловая скорость вращения падает.

Рис. 2.7. Схема импульсного управления (а), графики скорости вращения (б) при разных τ. (τ2 > τ1)

Работа двигателя состоит из чередующихся периодов разгона и торможения. И, если эти периоды малы по сравнению с электромагнитной постоянной времени якорной цепи Тэм.а, устанавливается некая средняя скорость, однозначно определяемая относительной продолжительностью включения (скважностью) t = tи/T, где tи - длительность импульса напряжения; T - период.

Частота управляющих импульсов составляет 200-400 Гц, в результате период управления Т оказывается на 2 порядка меньше электромагнитной постоянной времени обмотки якоря

Управление, при котором изменяется соотношение длительности импульса tи и паузы tп при постоянном периоде Т, называется широтно-импульсным.

Если параметры схемы подобраны так, что колебания тока, момента и угловой скорости вращения небольшие, работа двигателя практически не отличается от работы при постоянном напряжении, за которое можно принять среднее напряжение за период управления Т: Uср = Uномtи/T = tUном.

Оперируя средними значениями, получим уравнение, аналогичное (2.4), поскольку в данном случае мы имеем якорное управление

На рис. 2.8, а показаны графики тока сети (Ic) и тока якоря (Ia) при относительно больших нагрузках. При малых нагрузках ток двигателя становится небольшим и появляются периоды, когда при закрытом электронном ключе ток якоря уменьшается до нуля. Говорят, наступил режим прерывистых токов (рис.2.8, б). Механические характеристики приобретают перелом и становятся похожими на характеристики двигателя при регулировании реостатом в цепи якоря. В общем случае они имеют вид, представленный на рис. 2.9. Зона, соответствующая прерывистым токам, ограничена пунктирной линией. Критическая относительная частота вращения, при которой наступает перелом, равна

где: b=T/Tэм; T =tи + tп; Tэм = Lа/Rа.

Рис. 2.8. Графики тока сети Ic и тока якоря Ia при больших нагрузках (а) и тока якоря при малых нагрузках (б)

Основное преимущество импульсного управления заключается в уменьшении средней потребляемой мощности за счет уменьшения среднего тока.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: