Функциональные свойства распределенных систем

Из классической анатомии хорошо известно, что многие крупные образования головного мозга, объединенные внешними путями в сложные системы, включают массивные сети с повторными входами. Три группы описанных выше недавно обнаруженных фактов пролили новый свет на системную организацию головного мозга. Первая них состоит в том, что основные структуры головного мозга построены по принципу повторения одинаковых многоклеточных единиц. Эти модули представляют собой локальные нейронные цепи из сотен или тысяч клеток, объединенных сложной сетью интрамодульных связей.

Модули любого образования более или менее одинаковы, в разных образованиях они могут резко различаться. Модульная единица новой коры — это описанная выше вертикально организованная группа клеток. Такие основные единицы представляют собой одиночные трансламиларные цепи нейронов, мини-колонки, которые в некоторых областях собраны в более крупные единицы, величина и форма которых неодинаковы в разных местах. Но предполагается, что по своему качественному характеру функция обработки информации в новой коре одинакова в разных областях, хотя этот внутренний аппарат может быть изменен его предыдущей историей, особенно в критические периоды онтогенеза.

Вторым важным фактором, ведущим к изменению представлений о функции мозга, явилось накопление большого количества информации о внешних связях между крупными образованиями головного мозга. Теперь известно, что такие связи гораздо более многочисленны, избирательны и специфичны, чем думали раньше. Третьим важным фактором явилось открытие, что каждый модуль большой структуры включен не во все ее связи. Таким образом, вся группа модулей в совокупности разбита на подгруппы, из которых каждая соединена своей системой связей с такими же обособленными подгруппами в других структурах. Связанные между собой группы модулей нескольких, структур мы называем распределенными системами. Ясно, что в головном мозге гораздо больше распределенных систем, чем думали раньше (возможно, на несколько порядков больше). Таким образом, крупные структуры являются частями многих распределенных систем, придавая каждой из них свойство, определяемое связями, общими для всех модульных подгрупп структуры, с особым качеством их внутренней активности. Даже отдельный модуль такой структуры может быть членом нескольких (хотя и не многих) распределенных систем.

Таким образом, распределенные системы состоят из множества модульных элементов, связанных между собой «эшелонированные» параллельные и последовательные объединения. Информация распространяется по такой системе по многим разным путям, и доминирование того или иного из них составляет динамическое и изменчивое свойство системы. У такой системы много входов и выходов, и оба имеет доступ к выходным системам головного мозга на многих уровнях. Распределенную систему характеризует избыточность потенциальных командных то и командная функция может в разное время локализоваться в разных точках системы, особенно в той ее части, которая обладает самой срочной и нужной информацией.

Важное свойство таких распределенных систем, особенно тех, которые расположены к центру от первичных сенсорных и моторных систем, состоит в том, что своя функция, управляемая или выполняемая системой, не локализуется ни в одной из ее частей. Функция — это свойство динамической активности внутри системы: она включена в систему как таковой. Частичные функции и отдельные проявления функции системы могут осуществляться локальными операциями в ограниченных частях такой системы. Этим может объясняться то обстоятельство, что локальные повреждения распределенной системы лишь редко уничтожают ее функцию полностью, они только нарушают ее до предела, определяемого размером повреждения и критической ролью поврежденного участка в выполнении функции. Поразительная способность к восстановлению функций после частичных повреждений головного мозга рассматривается как свидетельство активной способности таких распределенных систем решать поведенческие задачи, пусть медленно и с ошибками, при помощи сохранившихся частей нервного аппарата.

Наконец, распределенные системы являются по определению и по наблюдению одновременно системами моторного входа и звеньями, связующими входные и выходные каналы нервной системы. Это означает, что множество перерабатывающих информацию модулей в новой коре доступно нервной активности, как генерируемой внутри, так и вызываемой извне. Фазные циклы, генерируемые внутри активности, захватывая сначала первичные сенсорные единицы, а затем последовательно более общие абстрактные единицы гомотипической коры, должны способствовать постоянному обновлению создаваемого человеком перцептивного образа самого себя и себя в окружающем мире, а также приведению этого образа в соотношение с внешними событиями. Это внутреннее считывание расположенной внутри информации и ее соответствие копии внешнего континуума рассматривается как проективный механизм сознательного восприятия. Механизм этот доступен научному исследованию.

В 1957 г. американский исследователь В. Маунткасл анализировал ответы нейронов в соматосенсорной коре кошки на стимулы разных модальностей и обнаружил, что при погружении микроэлектрода перпендикулярно поверхности новой коры (неокортекса) все встречаемые им нейроны отвечали на раздражитель одной и той же модальности. Если электрод погружать под углом к поверхности неокортекса, то на его пути попадались нейроны с другой сенсорной модальностью.

На основании экспериментальных фактов В. Маунткасл сделал заключение, что соматосенсорная кора организована системой колонок диаметром в 500 мкм, ориентированных перпендикулярно поверхности неокортекса.

Согласно теории Маунткасла, колонка является функциональной единицей сенсомоторной коры, где осуществляется переработка информации от рецепторов одной модальности. Гипотеза колончатой организации неокортекса получила широкое распространение и дала толчок к дальнейшим исследованиям в этой области.

Колонка располагается в пяти или шести слоях неокортекса коры больших полушарий головного мозга. Мы будем рассматривать в ней нейроны из верхних слоёв - крона колонки, и остов колонки представляет из себя крупный пирамидный нейрон, отвечающий за реакцию колонки.

Для кроны характерно то, что она состоит из звездчатых и малых пирамидных нейронов, которые образуют между собою определённые замкнутые цепи - память колонки. По этим замкнутым цепям может циркулировать нервный импульс и раздражать остов до тех пор, пока к нейронам цепи не поступят тормозные импульсы.

Крона колонки получает афферентный возбуждающий сигнал, затем она начинает неоднократно возбуждать остов до тех пор, пока не получит тормозной сигнал. Возбуждает крона остов колонки с определённым кодом импульсов ( паттерн), который зависит от специфики структуры замкнутых цепей - от памяти колонки.

Колонка имеет в ЦНС имеет три функции:

  • Получение информации и формирование ответной реакции;
  • Кодирование информации в паттерн импульсов остова для последующего анализа и хранения информации в других замкнутых нейронных цепях;
  • Сокращение скелетной мышцы с определённым тембром, с определённой последовательностью во времени.

Неокортекс впервые появился у пресмыкающихся, наиболее выраженное многослойное строение получил у млекопитающих. Колонки неокортекса у большинства животных имеют память с наследственным происхождением и не меняются до конца жизни организма. У высших животных, у человека память колонок может деформироваться, могут создаваться новые колонки с приобретённой памятью.

Для изменения памяти колонки необходимо перестраивать сложную структуру замкнутых цепей в кроне, а для этого необходима ещё более сложная работа для изменения структуры активных синапсов на мембране каждого нейрона.

Система активных синапсов на мембране нейрона регулируется и поддерживается в памяти ДНК нейрона. И для изменения памяти колонки все ДНК в кроне должны изменить функциональную программу работы.

Некоторый нейрон в кроне получает возбуждение от поступившей информации и начинает реагировать на остов. Но он не может самостоятельно наладить необходимую работу остова, которая бы привела к определённому результату.

В данном случае ДНК данного нейрона начинает начинает через ауру информировать другие ДНК кроны с требованием изменения функциональной программы регулирования активных синапсов. В результате чего все нейроны кроны приступают к перестройке связей между собою. Происходит поиск правильного паттерна возбуждения остова колонки.

Правильный паттерн приводит к достижению необходимого результата, после которого из структур лимбической системы мозга поступает тормозной импульс к кроне колонки.

Если крона долгое время не получает тормозного импульса, то она перевозбуждается и самостоятельно переходит в заторможенное состояние. К анализу поступающей информации приступает другая колонка.

Экстрапирамидная двигательная система. Нейроны двигательной системы загрузка... Термин «экстрапирамидная двигательная система» широко используют в клинических кругах для обозначения всех отделов головного мозга, которые участвуют в двигательном контроле, но не являются частью прямой кортикоспинальной пирамидной системы. Сюда входят пути через базальные ганглии, ретикулярную формацию ствола мозга, вестибулярные ядра и часто — через красные ядра. Это всеобъемлющая и многообразная группа областей нервной системы, контролирующих двигательные функции, что так называемой экстрапирамидной системе как целостной системе трудно приписать специфические нейрофизиологические функции. По этой причине термин «экстрапирамидная двигательная система» все реже используют как в клинике, так и в физиологии. Нейроны моторной коры организованы в вертикальные колонки. Клетки соматосенсорной и зрительной коры организованы в вертикальные колонки. Клетки моторной коры также собраны в вертикальные колонки, диаметр которых составляет долю миллиметра; одна колонка включает тысячи нейронов. Каждая колонка клеток функционирует как единое целое, обычно стимулируя группу мышц-синергистов, а иногда лишь одну мышцу. Кроме того, как и вся кора большого мозга, колонка имеет 6 отдельных слоев клеток. Все пирамидные клетки, дающие начало кортикоспинальным волокнам, лежат в 5 слое клеток от поверхности коры, а сигналы входят в колонку через 2-4 слои; 6 слой дает начало основной части волокон, которые связывают колонку с другими регионами самой коры большого мозга. Функция каждой колонки нейронов. Нейроны каждой колонки действуют как интегративная система обработки данных, использующая информацию от множества источников, на основании которой формируется ответ на «выходе» из колонки. Кроме того, каждая колонка может функционировать как усилительная система, стимулируя одновременно большое число пирамидных волокон, связанных с одной мышцей или с мышцами-синергистами. Это важно, поскольку стимуляция одиночной пирамидной клетки редко может возбудить мышцу. Обычно для вызова сокращения определенной мышцы нужно, чтобы одновременно или в быстрой последовательности возбудились 50-100 пирамидных клеток. Динамические и статические сигналы, передаваемые пирамидными нейронами. Если для запуска быстрого сокращения к мышце посылается сильный сигнал, то дальнейшее длительное поддержание сокращения может обеспечить гораздо более слабый продолжительный сигнал. Это обычный характер возбуждения, обеспечивающий мышечные сокращения. Для этого каждая колонка клеток возбуждает две популяции пирамидных нейронов, одну из которых называют динамическими нейронами, а другую — статическими нейронами. В течение короткого периода в начале сокращения интенсивно возбуждаются динамические нейроны, вызывая начальное быстрое разбитие силы. Затем статические нейроны возбуждаются с гораздо меньшей частотой и, продолжая возбуждаться с этой частотой, поддерживают силу сокращения так долго, как это необходимо. Нейроны красного ядра имеют подобные динамические и статические характеристики, за исключением того, что в красном ядре больше процент динамических нейронов, а в первичной моторной коре больше процент статических нейронов. Возможно, это объясняется тем, что красное ядро тесно связано с мозжечком, а мозжечок играет важную роль в быстрой инициации мышечного сокращения.

Источник: http://meduniver.com/Medical/Physiology/1031.html MedUniver


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: