Расчет предела статической устойчивости сложной энергосистемы

9.3.1. Статическая устойчивость энергосистемы по отношению к любым малым возмущениям (по виду и точке приложения) соответствует определению "устойчивости в малом" общей теории устойчивости Ляпунова и должна анализироваться при помощи ЦВМ по обоснованному Ляпуновым методу первого приближения [Л.1, 35-37].

В соответствии с этим для энергосистемы при определенных предпосылках определяются линеаризованные в точке исходного невозмущенного режима дифференциальные уравнения возмущенного (по Ляпунову) движения (предполагается в неявном виде возмущение начальных условий решения уравнений). Необходимым и достаточным критерием устойчивости энергосистемы является отрицательный знак действительных корней или действительной части комплексных корней характеристического определителя уравнений возмущенного движения.

9.3.2. Следует учитывать, что погрешность расчетов возрастает в основном из-за погрешности исходных данных при усложнении энергосистем и при более полном учете в модели энергосистемы автоматических регуляторов - в особенности при учете возможности самораскачивания в энергосистеме.

9.3.3. Расчеты статической устойчивости, выполняемые как при эксплуатации энергосистем, так и при проектировании их развития, дополнительно разделяются на два вида:

- выбор типа автоматических регуляторов и определение параметров их настройки;

- определение запасов устойчивости сложной энергосистемы.

Расчеты первого вида должны проводиться по полным критериям статической устойчивости (с учетом возможности самораскачивания). Подобные расчеты громоздки и трудоемки, поэтому при проведении их (даже при помощи ЦВМ) схему замещения энергосистемы приходится значительно упрощать, ограничиваясь варьированием типа и параметров АРВ на одной-трех электростанциях. При использовании результатов этих расчетов, в особенности при наладке автоматических регуляторов, параметры последних следует выбирать так, чтобы надежно исключить возможность самораскачивания.

Расчеты на ЦВМ целесообразно выполнять по программам определения границ областей устойчивости в плоскости двух параметров (большей частью - настроечных параметров АРВ). Желательна возможность задания серии расчетов с автоматическим изменением других параметров.

При выполнении расчетов второго вида допустимо полагать, что характеристики АРВ определены и заданы на основании типовых или конкретных расчетов или на основании специальных либо наладочных испытаний. Для расчетного определения запасов устойчивости необходимо стремиться к воспроизведению действительных условий работы энергосистемы как в отношении возможного утяжеления исходных режимов и учета различных ограничений, так и в отношении максимально возможного приближения расчетных схем замещения к реальным.

При этих расчетах очень сложно (и по изложенным выше соображениям практически нецелесообразно) использовать необходимые и достаточные условия отсутствия самораскачивания. Поэтому для подобных расчетов во многих случаях достаточно ограничиться анализом только апериодической (без учета самораскачивания) и "квазиапериодической" [Л.36, 46] устойчивости (с учетом возможности самораскачивания на низкой частоте). Допустимость такого упрощения может быть обоснована анализом устойчивости с учетом самораскачивания сравнительно простых схем замещения энергосистем или опытом эксплуатации данной энергосистемы (или энергосистем сходной структуры)*.

________________

* Опыт показывает, в частности, что при наладке AРB настроечные параметры устанавливаются с запасом по отношению к критическим (по условиям самораскачивания) значениям, выявленным наладочными испытаниями в контрольных режимах (запас необходим с учетом перспективы изменения структуры и режимов системы, а также с учетом возможной погрешности результатов расчетов, даже если они имели не типовой, а конкретный характер).

9.3.4. Проверка апериодической устойчивости выполняется по знаку свободного члена характеристического уравнения, проверка квазиапериодической устойчивости [Л.46] - кроме того и по знаку коэффициента предпоследнего члена. В обоих случаях проверяется также знак коэффициента a 0. Эти критерии дают возможность учитывать как режимные параметры энергосистемы, так и влияние в явном виде АРВ.

Поскольку расчет для сложной энергосистемы представляет определенные трудности даже при использовании ЦВМ, то при проверке указанных критериев целесообразно для части синхронных машин энергосистемы отказаться от учета АРВ в явном виде, выполняя расчет при постоянстве фиктивных ЭДС этих синхронных машин, которые вводятся в схему замещения сопротивлением х в пределах между xd (отсутствие АРВ) и (АРВ пропорционального действия) или (АРВ сильного действия, 0 < а < 1); учет АРВ в неявном виде для части синхронных машин (электростанций) весьма упрощает проверку устойчивости.

Для оценки допустимости других приближенных критериев устойчивости и приближенного учета АРВ, а также для сравнительно ответственных эксплуатационных расчетов необходима программа расчета на ЦВМ, которая могла бы являться эталонной в рамках предпосылок для анализа статической устойчивости энергосистем.

9.3.5. Целесообразность усложнения или упрощения модели, реализуемой в эталонной программе, необходимо обосновывать с учетом влияния погрешности исходной информации на результаты расчетов* [Л.65-68].

_______________

* В сравнительно простых вариантах алгоритмов, позволяющих рассчитывать критерии апериодической и квазиапериодической устойчивости, учитывается регулирование возбуждения синхронных машин в зависимости от отклонения и от производных тока, напряжения и абсолютного угла и зависимость механического момента от частоты вращения при постоянном коэффициенте результирующего демпфирования [Л.45].

9.3.6. Для нахождения предела и определения запасов статической устойчивости используется метод последовательного изменения (утяжеления) исходного режима с проверкой для утяжеленного режима критерия устойчивости.

Возможны случаи, когда предельный режим обуславливается не устойчивостью системы, а осуществимостью установившегося режима при заданных ограничениях. Если расчеты выявили, что предельные по эксплуатационной осуществимости режимы являются устойчивыми или весьма близки к пределу устойчивости, можно в дальнейшем, для сходных по расчетным условиям вариантов или новых заданий не проверять критерий устойчивости, что соответственно упрощает и ускоряет решение задачи о предельных режимах.

9.3.7. Следует различать два вида ограничений, задаваемых (или рассчитываемых по некоторому алгоритму) при утяжелении исходных стационарных режимов энергосистемы:

- ограничения длительно допустимых эксплуатационных режимов (эксплуатационные ограничения). К ним относятся нормативные условия допустимой перегрузки по току или по тепловому режиму машин, трансформаторов и других элементов системы (формулируемые часто как ограничения располагаемой реактивной мощности), ограничения по перетокам в некоторых линиях электропередачи, по уровням напряжения в заданных точках сети, по допустимым отклонениям частоты и т.п.;

- ограничения режимов, которые возможны и допустимы лишь кратковременно, но устойчивость энергосистемы в которых еще может сохраняться, что должно быть проверено расчетом (технические ограничения). Ограничения в этих режимах определяются техническими характеристиками элементов энергосистемы (например, потолком возбуждения машин, форсировочной способностью автоматических регуляторов, уставкой автоматов безопасности турбин при повышенной частоте, уставкой частотной разгрузки при пониженной частоте и т.п.).

9.3.8. При расчетном утяжелении режимов энергосистемы возможен выход на эксплуатационные ограничения еще до предела статической устойчивости. В этом случае расчетом выявляются пределы осуществимости утяжеления в отношении длительно допустимых эксплуатационных режимов. Для оценки практической допустимости этих режимов (в отношении устойчивости) необходимо продолжить их расчетное утяжеление, заменив в расчете те эксплуатационные ограничения, которые не обеспечиваются сравнительно быстродействующий автоматическими устройствами, на технические ограничения. Это определит запас статической устойчивости энергосистемы при данном способе утяжеления исходного режима. Кроме того, определение нарушения эксплуатационных ограничений, например при анализе возможных послеаварийных ситуаций, даст ориентировку для обеспечения автоматического или диспетчерски управляемого перевода энергосистемы в область длительно допустимых устойчивых режимов.

9.3.9. Расчетное утяжеление режима при плановых, и, в будущем, при оперативных расчетах в соответствии с заданиями, анализирующими реальные условия работы энергосистемы и варианты диспетчерского управления, рекомендуется осуществлять следующими основными способами:

- увеличением общей нагрузки (и генерации) энергосистемы в заданных узлах сети с возможностью различного шага утяжеления в этих узлах;

- перераспределением нагрузок между генерирующими узлами;

- снижением напряжения в заданных узлах сети (изменением фиксированного модуля напряжения или реактивной мощности в узлах).

Возможно также комбинирование указанных способов утяжеления.

9.3.10. При выполнении расчетов следует учитывать, что в большинстве имеющихся программ для ЦВМ второго поколения утяжеление стационарных режимов производится при допущении о неизменности частоты. Балансирующие активную мощность узлы сети рекомендуется совмещать с шинами электростанций, регулирующих частоту. Балансирование реактивной мощности наполняется всеми узлами, в которых задается фиксированные по модулю напряжения или статические характеристики нагрузки Qн (U).

Для использования программ, позволяющих рассчитывать утяжеление исходного режима с учетом изменений частоты, необходимо вводить дополнительную информацию: статические характеристики зависимости активной и реактивной мощности нагрузки и генерации от частоты. Должны изменяться также ограничения режима. ЦВМ третьего поколения позволяет выполнять такие расчеты утяжеления режима с необходимой полнотой.

9.3.11. Выявление при анализе устойчивости энергосистемы ее "слабых" звеньев, определяющих уровень устойчивости всей энергосистемы, достигается последовательным сравнением результатов расчета устойчивости для заданной схемы замещения и схем, в которых сомнительные звенья исключаются при помощи известных способов упрощения энергосистемы. Возможно также выполнение для этой цели расчетов переходных процессов в той же схеме замещения энергосистемы при конкретных малых возмущениях, выявляющее сравнительно большие отклонения режима или нарушение устойчивости слабых звеньев энергосистемы.

Если имеются опасения, что при упрощении исходной схемы энергосистемы были устранены слабые звенья (возможность выявления неустойчивости движения внутри группы машин, объединенных в одну эквивалентную машину), можно при необходимости повторить расчет, расчленив эквивалентную машину на две машины, или восстановив в схеме другие предположительно слабые звенья.

Для ЦВМ третьего поколения желательна разработка специальной подпрограммы "диагностики" типовых расчетов для выбора вариантов эквивалентирования больших схем и определения "слабых звеньев".


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: