Расчеты динамической устойчивости и электромеханических переходных процессов

9.4.1. В соответствии с общей теорией устойчивости Ляпунова понятию динамической устойчивости энергосистемы должно было бы соответствовать определение "устойчивости в большом" энергосистемы, основанное на анализе нелинейных дифференциальных уравнений возмущенного (по Ляпунову) движения. В практике анализа режимов энергосистем понятию динамической устойчивости соответствует определение электромеханического переходного процесса для заданного ограниченного интервала времени при заданном конкретном возмущении [Л.3, 35].

При этом переходный процесс определяется путем численного интегрирования нелинейных уравнений динамики энергосистемы (с учетом автоматических регуляторов непрерывного действия и автоматических устройств дискретного действия). Применение ЦВМ дает возможность производить расчеты для достаточно сложных схем замещения (математических моделей) энергосистемы при достаточной длительности рассчитываемой части переходного процесса. Точность результатов расчета для заданной модели системы ограничивается, главным образом, точностью исходной информации (включая информацию об исходном установившемся режиме). Погрешность расчетов возрастает с увеличением в рассчитываемом переходном процессе числа колебательных циклов проверяемых координат (обычно, углов между ЭДС синхронных машин), в особенности, если расчет выявляет возникновение асинхронного хода в энергосистеме.

9.4.2. Относительно практической целесообразности анализа устойчивости энергосистема "в большом", по прямому методу Ляпунова (соответствующие программы разрабатываются) необходимо иметь в виду следующее:

- в разработанных программах до расчета по прямому методу Ляпунова все же применяется расчет переходного процесса (численным интегрированием). Лишь после того, как этот расчет охватит все заданные конкретные возмущения (например, двухфазное КЗ в начале заданной линии электропередачи, ликвидируемое каскадным отключением с двух сторон поврежденной цепи, автоматическое повторное включение поврежденной цепи и повторное ее отключение, срабатывание других устройств противоаварийной автоматики и т.п.), расчет переходного процесса может быть прекращен и зафиксированы начальные условия для дальнейшего расчета по прямому методу Ляпунова;

- расчет может определить лишь достаточные (но не необходимые) условия устойчивости при дальнейшем переходном процессе без дополнительных конкретных возмущений. Поэтому в большинстве случаев остается необходимым рассчитать также статическую устойчивость для самоустанавливающегося послеаварийного режима. Этот расчет следует проводить для математической модели, значительно более приближающейся к реальным условиям послеаварийного режима (обычно утяжеленного), чем модель, используемая в расчете по прямому методу Ляпунова. Это важно не только для проверки устойчивости послеаварийного режима энергосистемы, но и для оценки запаса статической устойчивости этого режима;

- если самоустанавливающийся послеаварийный режим может быть реализован лишь кратковременно, то необходимо рассчитать длительно допустимый (при возникших условиях) режим, в которой может быть переведена энергосистема.

В алгоритмах эталонных программ расчета динамической устойчивости, в зависимости от их назначения, желательно предусматривать (помимо того, что учитывается в серийных программах) хотя бы для нескольких синхронных машин учет полных уравнений Парка-Горева, учет влияния магнитного насыщения, уточненный учет автоматического регулирования возбуждения и скорости машин, уточненный учет действия устройств противоаварийной автоматики. Желательно также использование достаточно точного метода численного интегрирования (желательно с оценкой накопляющейся погрешности), учет волновых процессов в длинных линиях электропередачи, возможность учета случайных вариаций исходных данных и автоматической статистической обработки серии расчетов по методу статистических испытаний.

9.4.3. При проведении расчетов динамической устойчивости по серийным программам рекомендуется определять исходный доаварийный режим в соответствии с приведенными выше указаниями (п.9.2). В программах целесообразно предусматривать проверку сбалансированности введенного в расчет исходного режима (возможны как ошибки в задании исходных данных, так и ошибки при вводе информации в ЦВМ). Такая проверка может состоять в том, что по программе расчета динамической устойчивости рассчитываются сначала несколько интервалов времени при отсутствии заданного возмущения. Это позволяет убедиться в том, что результаты расчета этих интервалов совпадают с данными исходного доаварийного режима. В программе должна быть предусмотрена печать фактически введенных в ЦВМ исходных данных.

9.4.4. В программах следует предусматривать возможность учета уравнений асинхронных двигателей (см. гл. 6), а также статические характеристики нагрузки, как обобщенные (см. гл. 2), так и с конкретно задаваемыми коэффициентами описывающих их полиномов.

9.4.5. Рекомендуется при отсутствии других возможностей оценивать точность численного интегрирования путем уменьшения шага интегрирования. Такую оценку желательно производить в начале расчета и в той его части, когда контролируемые параметры переходного процесса изменяются с наибольшей скоростью (если в программе расчета на ЦВМ не предусмотрено автоматическое изменение шага интегрирования).

9.4.6. В зависимости от назначения расчетов целесообразно осуществлять печать и отображение на ЭЛТ графиков (для оперативной оценки хода и результатов расчетов) и печать таблиц в конце расчета (для более подробной и окончательной оценки результатов расчета).

9.4.7. Рекомендуется проводить серии расчетов при обоснованном выборе необходимых вариантов по исходному режиму, возмущению, параметрам устройств противоаварийной автоматики и др.

9.4.8. При расчете на ЦВМ длительных электромеханических переходных процессов, в особенности включающих в себя асинхронный ход и его ликвидацию (расчет результирующей устойчивости), рекомендуется следующее: использование для эквивалентных машин, частота вращения которых в переходном процессе может измениться наиболее значительно, уравнений Парка-Горева, уточненной математической модели АРС, учет асинхронных (и при необходимости синхронных) двигателей в тех узлах сети, в которых может быть значительное изменение напряжения, определение в ходе расчета режимных параметров, от которых зависит действие соответствующих релейных защит и устройств противоаварийной автоматики; применение сравнительно более точного метода численного интегрирования, желательно с оценкой накопляющейся погрешности.

9.4.9. Пои определении токов и напряжений в различных звеньях энергосистемы в заданные моменты времени электромеханического переходного процесса следует иметь в виду, что в несимметричных режимах (например, до отключения несимметричного КЗ во всех фазах или при неполнофазных режимах) по используемым в настоящее время программам расчета на ЦВМ определяются токи и напряжения прямой последовательности фаз. Для ЦВМ третьего поколения программы могут быть модифицированы для расчета токов и напряжений других последовательностей.

Определение эквивалентного шунта в схеме замещения энергосистемы при несимметричном КЗ может производиться по программе расчета схем замещения нулевой и обратной последовательности или по программе, в которой задается снижение напряжения прямой последовательности в точке КЗ (и мощность, потребляемая шунтом). Второй вариант программы целесообразен в случае отсутствия достоверных данных о параметрах схем нулевой и обратной последовательности.

Характеристику программ для расчетов динамической устойчивости энергосистем см. в приложении 16.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: