Линейные неоднородные ДУ второго порядка с постоянными коэффициентами и специальной правой частью

Это уравнение вида:

, (3)

где

– многочлены степени n и m соответственно.

– постоянные величины.

Известно, что общее решение таких уравнений имеет вид

,

где – какое-либо частное решение неоднородного уравнения (3),

– общее решение соответствующего однородного уравнения

Частное решение уравнения (3) ищем в виде, подобном правой части:

, (4)

где многочлены k -той степени с неизвестными коэффициентами, определяемыми в процессе решения, k= max{n,m}.

При этом следует составить число , где – коэффициент при x в показателе , – коэффициент при x в аргументе синуса или косинуса (если один из них отсутствует). Если это число не является корнем характеристического уравнения, то в виде (4) оставляем без изменения, если есть корень кратности s (повторяется s раз), то выбранный домножаем на .

Примеры

1) Если , то смотрим является ли корнем характеристического уравнения число ,

8 – многочлен нулевой степени, в общем виде это некоторое число, т.е. выбираем .

2)

.


После предварительного выбора проверяем, является ли число корнем характеристического уравнения. Далее находим первую, вторую производную , подставляем их в первоначальное уравнение и находим A, B, C.

Примеры (см. задание 5):

а) Найдем , решим соответствующее однородное уравнение

, составим характеристическое уравнение

,

(корень кратности 2 – повторяется 2 раза),

тогда -общее решение соответствующего однородного уравнения.

б) Найдем . Его будем искать в виде, подобном правой части. Там -это многочлен второй степени, в общем виде это , т.е.

.

Число не является корнем характеристического уравнения, значит, оставим в выбранном виде. Теперь найдем неизвестные коэффициенты . Так как – есть решение первоначального дифференциального уравнения, то оно обращает это уравнение в тождество. Найдем и подставим в первоначальное уравнение

Два многочлена тождественно равны тогда и только тогда, когда равны их коэффициенты при одинаковых степенях неизвестного. Приравняем коэффициенты при (свободный член) в обеих частях

тогда

.

Общее решение

.

,

а) -решаем соответствующее однородное уравнение. Составим его характеристическое уравнение.

б) ,

-является корнем характеристического уравнения, тогда домножим на x, так как пара повторяется один раз, тогда окончательно

.

Найдем A и B.

Подставим в первоначальное ДУ

Приравниваем коэффициенты при sin x и cos x

,

тогда .

Замечание. Если в правой части отсутствуют и , частное решение ищем все равно в виде суммы двух слагаемых.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: