Орогенный и рифтогенный тренды дифференциации магм. Диаграммы

Рифтогенный тренд связан с фракционированием Pl (Pl - минерал на ликвидусе). Кристаллизация этого минерала приводит к накоплению в расплаве Fe, в то время как кремнекислотность повышается крайне незначительно, в рез-те чего мы приходим к появлению ферробазальтов и ферроандезитов (исландитов). Дальнейшее накопление Fe в условиях флюидного давления приводит к расслаиванию с образованием еще более железистых пород (иногда рудных скоплений) и небольшого объема кислых дифференциатов.

Процесс рифтогенеза в целом связан с невысоким флюидным давлением. Источником флюидов является жидкое ядро Земли (центр твердый, а внешняя часть расплавленная). Ядро все время кристаллизуется, и на фронте кристаллизации накапливаются флюидные

компоненты (главным образом, Н2). По мере окисления флюиды обогащаются Н2О, что приводит к снижению температуры плавления. В рез-те образ-ся первичная мантийная магма, которая начинает быстро расслаиваться. Состав первичной магмы примерно отвечал пикритам ("пиролит"). Дальше происходит базит-гипербазитовое расслаивание. Т.о., рифтогенез порождает базит-гипербазитовый магматизм. Дальше базитовая и гипербазитовая части эволюционируют автономно: первая дает габбро, базальты и гипербазиты дунит-клинопироксенитовой (платиноносной) формации, а кристаллизация второй приводит к формированию гипербазитов дунит-гарцбургитовой (хромитоносной) формации, входящей в состав офиолитовой ассоциации. При внедрении основных магм в ультраосновную среду стабилизируются составы щелочных базальтов и долеритов, которые с переходом к более глубинным условиям (при возрастании флюидного давления) уступают место нефелиновым сиенитам, нефелиновым, лейцитовым, флогопитовым лампрофирам и кимберлитам, развивающимся в наиболее глубинных очагах магматического замещения пироповых алмазоносных перидотитов. В плутонической фации крайним проявлением магматического замещения являются граниты.

14. Строенние Солнечной системы и проихожденние планет.

Солнечная система по одной из гипотез произошла из газопылевого облака и прошла следующие стадии развития:

1 – взрыв сверхновой звезды порождает ударные волны, воздействующие на газопылевое облако (ГПО);

2 – ГПО начинает фрагментироваться и сплющиваться, закручиваясь при этом;

3 – формируется первичная Солнечная небула;

4 – образование Солнца и гигантских, богатых газом планет – Юпитера и Сатурна;

5 – ионизированный газ – Солнечный ветер сдувает газ из внутренней зоны системы и с мелких планетезималей;

6 – образование внутренних планет из планетезималей в течение 100 млн. лет и формирование «облаков» Оорта, состоящих из комет.

Звезды типа Солнца - желтые карлики, формируются при сжатии газопылевых облаков, масса которых должна быть не меньше 105 массы Солнца. Прообразом такого облака могла служить некая туманность. По одной из гипотез на скажите газопылевого облака мог повлиять взрыв близкой сверхновой звезды, ударные волны от которого и заставили облако сжиматься и вращаться. По другой - газопылевое облако, в силу своего участия в общем вращении ГМП, начало сжиматься, однако большой момент вращения не допускает дальнейшего сжатия и облако распадается на отдельные сгустки - будущие планеты. Надо отметить, что начальный момент превращения газопылевого облака в протопланетный диск, наименее ясный момент в процессе формирования Солнечной системы.

Как бы то ни было, радиус газопылевого облака должен был быть больше радиуса орбиты девятой планеты - Плутона, равной 40 А.Е. Состав облака характеризовался 99% газа и 1% пылевых частиц размером в микроны. Когда газопылевое облако начало сжиматься и вращаться в дисковидном облаке возникали мощные турбулентные вихри, ударные волны, гравитационные приливы, перемешивающиеся газ облака, которое, благодаря этому оставалось однородным. Время, необходимое для образования диска из облака оценивается всего лишь в 1000 лет, газ при этом охлаждается и образуются более крупные пылевые частицы, конденсируясь из газа, т.к. давление в облаке очень небольшое. В центральной части диска, благодаря быстрому коллапсу, зажглось Солнце, а при удалении от него в протопланетном диске температура уменьшалась до десятков градусов на краю диска, что подтверждается конденсацией льда воды за поясом астероидов. Итак, частицы пыли перемещались к центральной плоскости диска и чем крупнее была пылинка, тем быстрее она “падала”. Внешние слои диска теряли газ за счет его нагревания излучением молодого Солнца и мощного потока ионизованной плазмы - солнечного ветра. Формирование пылевого субдиска в центральной части первичного газопылевого диска оценивается всего лишь в 105 лет. Когда плотность пылевых частиц в субдиске достигала некоторого критического значения, диск стал гравитационно неустойчивым и начал распадаться на отдельные сгущения пыли, причем, чем выше была плотность в сгущении, тем оно быстрее увеличивалось в размерах. Плотные сгустки, размером с хороший астероид, сталкиваясь, объединялись и, увеличиваясь в размерах, превращались в рой планетезималей, размером до 1 км. Слипание, объединение планетезималей возможно только в случае небольшой скорости, соударения и неровной контактной поверхности, облегчавшей их сцепление. Образование планетезималей заняло не более 1 млн. лет, т.е. произошло с космической точки зрения почти мгновенно.

Важнейшим этапом была аккреция собственно планет из роя планетезималей, занявшая уже гораздо больше времени, около млрд. лет. Эти тела двигались по круговым орбитам, сталкиваясь друг с другом, разрушаясь, выбрасывая газ и пыль, но если тело было крупное, оно не разваливалось от ударов, а, наоборот, присоединяло к себе другие частицы и планетезимали. Чем больше было тело, тем оно быстрее росло и вступало в гравитационное взаимодействие с другими телами, изменяя их орбиты. Именно в этих, наиболее крупных телах и сосредотачивалась основная масса вещества допланетного диска, образуя зародыши планет. Образования группы внутренних планет происходило за счет соударений каменных планетезималей, в отсутствии легких газов, которые удалялись солнечным ветром. Но планеты-гиганты, вернее их силикатные ядра, достигали уже размеров 2-3 массы Земли и сумели удержать водородно-гелиевую газовую оболочку. Когда Юпитер на стадии быстрой аккреции достиг внушительных размеров - примерно 50 масс Земли, он присоединил к себе весь газ из окружающего пространства и далее аккреция пошла уже намного медленнее, т.к. газ оказался исчерпанным. Сатурн, который расположен дальше от Солнца, рос медленнее и по составу отличается от Солнца сильнее, чем Юпитер. Точно также, двухступенчато, росли и остальные планеты - гиганты. Сначала формировались ядра, а затем происходила аккреция газов. Огромные количества энергии, высвобождавшееся при аккреции, нагревало внешние газовые оболочки планет-гигантов до нескольких тысяч градусов. Любопытно, что когда формировались спутники Юпитера, то ближе к нему расположенные, особенно Ио, и, в меньшей степени, Европа состояли из каменного вещества, т.к. температура на этих орбитах была выше температуры конденсации водяного пара. Дальние спутники - Ганимед и Каллисто, в большей своей части состоят уже из льда воды, т.к. температура была низкой, поэтому в составе далеких спутников планет-гигантов, да и самих наиболее удаленных планет, распространены конденсаты метана, этана, аммиака и воды.

Спутники планет образуются по той же принципиальной схеме, что и сами планеты. Во время аккреции планеты часть планетезималей захватывается силой ее гравитации на околопланетную орбиту. Так у планеты формируется доспутниковый диск, из которого путем аккреции образуются спутники.

На счет формирования планет земной группы существуют две, наиболее распространенные точки зрения. Ранняя из них полагала, что первоначальная Земля, сформировавшаяся сразу после аккреции из планетезималей, состоящих из никелистого железа и силикатов, была однородна и только потом подверглась дифференциации на железо-никелевое ядро и силикатную мантию. Эта гипотеза получила название гомогенной аккреции.

Более поздняя гипотеза гетерогенной аккреции заключается в том, что сначала аккумулировались наиболее тугоплавкие планетезимали, состоящие из железа и никеля и только потом в аккрецию вступило силикатное вещество, слагающее сейчас мантию Земли от уровня 2900 км. Эта точка зрения сейчас наиболее популярна, хотя и здесь возникает вопрос о выделении внешнего ядра, имеющего свойства жидкости. Процесс аккреции, столкновение планетезималей размером до 1000 км, сопровождался большим выделением энергии, с сильным прогревом формирующейся планеты, ее дегазацией, т.е. выделением летучих компонентов, содержащихся в падавших планетезималях. Большая часть летучих при этом безвозвратно терялась в межпланетном пространстве, о чем свидетельствует сравнение составов летучих в метеоритах и породах Земли. Процесс становления нашей планеты по современным данным длился около 500 млн. лет и проходил в 3 фазы аккреции. В течение первой и главной фазы Земля сформировалась по радиусу на 93-95% и эта фаза закончилась к рубежу 4,4 – 4,5 млрд. лет, т.е. длилась около 100 млн. лет. Вторая фаза, ознаменовавшаяся завершением роста, длилась около 200 млн. лет. Наконец, третья фаза, продолжительностью до 400 млн. лет (3,8-3,9 млрд. лет окончание) сопровождалась мощнейшей метеоритной бомбардировкой, такой же как и на Луне.

Факторов нагрева планеты было много. Это и гравитационная энергия, и соударение планетезималей, и падение очень крупных метеоритов, при ударе которых повышенная температура распространялась до глубин 1-2 тыс. км. Если же, все-таки, температура превышала точку плавления вещества, то наступала дифференциация – более тяжелые элементы, например, железо, никель, опускались, а легкие, наоборот, всплывали. Но главный вклад в увеличение тепла должен был играть распад радиоактивных элементов - плутония, тория, калия, алюминия, йода. Еще один источник тепла – это твердые приливы, связанные с близким расположением спутника Земли - Луны. Все эти факторы, действуя вместе, могли повысить температуру до точки плавления пород, например, в мантии она могла достигнуть +1500°С. Но давление на больших глубинах препятствовало плавлению, особенно во внутреннем ядре. Процесс внутренней дифференциации нашей планеты происходил всю ее геологическую историю, продолжается он и сейчас. Однако, уже 3,5-3,7 млрд. лет назад у Земли было твердое внутреннее ядро, жидкое внешнее и твердая мантия, т.е. она уже была дифференцирована в современном виде. Об этом говорит намагниченность таких древних горных пород, а, как известно, магнитное поле обусловлено взаимодействием жидкого внешнего ядра и твердого внешнего. Процесс расслоения, дифференциации недр происходил на всех планетах, но на Земле он происходит и сейчас, обеспечивая существование жидкого внешнего ядра и конвекцию в мантии. Атмосфера и гидросфера Земли возникли в результате конденсации газов, выделявшихся на ранней стадии развития планеты.

15. Развитие планет гигантов и их спутников.

16. Понятие о поясе астеройдов и происхождение метеоритов. Разделение метеоритов на гелеоцентрический и планетоцентричесский типы.

Астероиды - космические твердые тела, обладающие размерами, близкими к размерам малых спутников планет, образующие скопления между орбитами Марса и Юпитера. Многие десятки тысяч астероидов имеют размеры порядка первых десятков км, но есть и крупные: Церера (1020 км диаметр), Веста (549 км), Паллада (538 км) и Гигея (450 км). При столкновениях между собой астероиды дробятся и порождают метеориты, падающие на поверхность Земли. По-видимому, большая часть астероидов состоит из 4-х видов пород, известных нам по составу метеоритов, это: 1) углистые хондриты, 2) класс S или обыкновенные хондриты, 3) класс М или железо-каменные и 4) редкие породы типа говардитов и эвкритов.

Наибольшим признанием пользуется идея О.Ю. Шмидта, заключающаяся в том, что астероиды никогда не принадлежали распавшейся планете, а представляют собой куски материала, образовавшиеся в результате процессов первичной аккреции газово-пылевых частиц. Их дальнейшее слипание оказалось невозможным из-за сильного гравитационного возмущения со стороны огромного Юпитера и уже сформировавшиеся крупные тела начали распадаться на более мелкие. Важно, что орбиты многих астероидов под влиянием гравитационных сил планет меняют свое положение. Особенно этому подвержены орбиты с большим эксцентриситетом, а также обладающими большими углами наклона к плоскости эклиптики. Такие астероиды пересекают орбиту Земли и могут с ней столкнуться. Из геологической истории известны падения крупных космических тел на поверхность Земли, оставивших огромные кратеры - астроблемы (“звездные раны”) и сопровождавшиеся катастрофическими последствиями для биоты. Не исключена возможность столкновения астероида с Землей и в будущем, поэтому ученые озабочены расчетами уточнения орбит астероидов, которые могут пролететь вблизи Земли.

Метеориты - твердые тела космического происхождения, достигающие поверхности планет и при ударе образующие кратеры различного размера. Источником метеоритов является, в основном, пояс астероидов. Когда метеорит входит с большой скоростью в атмосферу Земли, его поверхностные слои разогреваются, могут расплавиться и метеорит “сгорит”, не достигнув Земли. Однако, некоторые метеориты падают на Землю и, благодаря, огромной скорости, их внутренние части не претерпевают изменений, т.к. зона прогрева очень мала. Размеры метеоритов колеблются от микрон до нескольких метров, весом в десятки тонн.

Все метеориты по своему химическому составу подразделяются на 3 класса:

1) Каменные метеориты являются наиболее распространенными (64,9 % от всех находок). Среди них различают хондриты и ахондриты. Хондриты получили свое название благодаря наличию мелких сферических силикатных обособлений - хондр, занимающих более 50 % объема породы. Чаще всего хондры состоят из оливина, пироксена, плагиоклаза и стекла.

Химический состав хондритов позволяет предполагать, что они произошли из первичного, протопланетного вещества Солнечной системы, отражая его состав времени формирования планет, их аккреции. Это подтверждается сходством отношений основных химических элементов и элементов примесей для хондритов и в спектре Солнца. Содержание SiO2 в хондритах - меньше 45%, сближает их с земными ультраосновными породами. Хондриты подразделяются по общему содержанию железа на ряд типов, среди которых наибольший интерес представляют углистые хондриты, содержащие больше всего железа, находящегося в силикатах. Кроме того, в углистых хондритах, присутствует много до 10% органического вещества, которое имеет, однако, не биогенное происхождение. Кроме минералов типа оливина, ортопироксена, плагиоклаза, типичных и для земных пород, в хондритах присутствуют минералы, встречающиеся только в метеоритах.

Ахондриты не содержат хондр и по составу близки к земным магматическим ультраосновным породам. Ахондриты подразделяются на богатые Са (до 25 %) и бедные Са (до 3 %).

2) Железо-каменные метеориты по распространенности занимают третье место и состоят они как из никелистого железа, так и силикатного каменного материала, представленного, в основном, оливином, ортопироксеном и плагиоклазом. Этот силикатный материал вкраплен, как в губку никелистого железа, или наоборот, никелистое железо вкраплено в силикатную основу. Все это свидетельствует о том, что вещество железо-каменных метеоритов прошло дифференциацию. Преимущественно сложены палласитом.

3) Железные метеориты по распространенности занимают второе место и представляют собой твердый раствор никеля в железе. Содержание никеля колеблется в широких пределах и на этом основано разделение метеоритов на различные типы. Самым распространенным типом являются октаэдриты с содержанием никеля от 6 до 14 %. Они характеризуются т.н. видманштеттеновой структурой, сложенной пластинами камасита (никелистое железо, Ni ~ 6%), расположенными параллельно граням октаэдра и заполняющими между ними пространство тэнитом (никелистое железо, Ni ~ 30 %).

Возраст метеоритов, определенный радиоизотопными уран-свинцовым и рубидий- стронциевым методами дают цифры в 4,4 - 4,7 млрд. лет. Такие цифры соответствуют принятому возрасту формирования Солнечной системы, что свидетельствует в пользу одновременного образования планет и тех тел, из которых впоследствии возникли метеориты. После того, как обломок отделяется от родительского тела и превращается в метеорит, он облучается космическими лучами и космический возраст собственно метеорита намного меньше возраста образования родительской породы.

Происхождение метеоритов представляет собой важнейшую проблему, по которой существует несколько точек зрения. Наиболее распространенная гипотеза говорит о происхождении метеоритов за счет астероидов в поясе между Марсом и Юпитером. Есть 2 модели:

- модель ранней допланетной эволюции: метеориты являются продуктом прямой конденсации. Т.е. изначально аккумулировалась космическая пыль, давала скопления. Далее формировались хондры или другие агрегаты, отдельно формировалась матрица.

- модель в ходе эволюции планет: метеориты являются продуктами разрушения планет и их спутников, главным образом, в поясе астероидов.

Предполагается, что астероиды в разных частях пояса могли иметь различный состав и, кроме того, в начале своего образования они подвергались нагреву, возможно, частичному плавлению и дифференциации. Поэтому, хондриты, ахондриты, углистые хондриты соответствуют различным участкам раздробившегося родительского астероида. Однако, часть метеоритов, и это уверенно доказано, происходит с поверхности Луны, общим весом более 2 кг, и еще больше, около 80 кг с поверхности Марса. Метеориты лунного происхождения полностью тождественны по минералогическому составу изотопным и структурным характеристикам лунным породам, собранных на поверхности Луны астронавтами или доставленных автоматическими станциями. Метеориты с Марса, общим числом 12, частично были найдены в ХIХ веке, а частично в наши дни, в частности в Антарктиде в 1984 г.

Распределение метеоритов, комет и планет по составу.

Планеты земной группы, их состав, строение и происхожденние.

Средние составы планет земной группы (Земля, Венера, Марс) соответствуют полю хондритов. Меркурий слишком богат железом, а Луна, как и положено спутнику, бедна железом и находится в поле ахондритов. Это позволяет рассматривать хондритовую модель образования планет (у Меркурия ранее было много спутников, в которых обособилось легкое (силикатное) вещество планеты). Типичные хондриты состоят из силикатных капель (Px, Ol) и матрицы, богатой никелистым Fe. В планетах Земной группы cиликатно-железистое расщепление космического в-ва выразилось в его расслаивании на силикатные оболочки и железные ядра. В рез-те эксперимента первичный расплав расслаивается на водородную никель-железную (ядро), железо-ультраосновную (Mg, Fe, Si) (нижняя мантия), ультраосновную (верхняя? мантия), переходную (Mg, Al, Si) (литосфера) и основную (Na, К, Si, Al) части (ЗК), сопоставляющиеся со схемой строения Земли.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: