Транзистор — это полупроводниковый прибор, предназначенный для усиления, инвертирования, преобразования электрических сигналов, а также переключения электрических импульсов в электронных цепях различных устройств. Различают биполярные транзисторы, в которых используются кристаллы n- и p- типа, и полевые (униполярные) транзисторы, изготовленные на кристалле германия или кремния с одним типом проводимости.
Биполярные транзисторы
Биполярные транзисторы — это полупроводниковые приборы, выполненные на кристаллах со структурой p-n-p- типа (а) или n-p-n -типа (б) с тремя выводами, связанными с тремя слоями (областями): коллектор (К), база (Б) и эмиттер (Э) (рис. 20).
Рисунок 20- Биполярные транзисторы: а) структура p-n-p- типа; б) структура n-p-n -типа
База Б — это средний тонкий слой, служащий для смещения эмиттерного и коллекторного переходов. Толщина базы должна быть меньше длины свободного пробега носителей заряда. Эмиттер Э — наружный слой, источник носителей заряда с высокой концентрацией носителей, значительно большей, чем в базе. Второй наружный слой К, принимающий носителей заряда, называют коллектором.
|
|
Ток в таком транзисторе определяется движением зарядов двух типов: электронов и дырок. Отсюда его название — биполярный транзистор.
Физические процессы в транзисторах p-n-p- типа и n-p-n- типа одинаковы. Отличие их в том, что токи в базах транзисторов p-n-p- типа переносятся основными носителями зарядов — дырками, а в транзисторах n-p-n -типа — электронами.
Каждый из переходов транзистора — эмиттерный (Б-Э) и коллекторный (Б-К) можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают три режима работы транзистора:
- режим отсечки — оба p-n- перехода закрыты, при этом через транзистор протекает сравнительно небольшой ток I 0, обусловленный неосновными носителями зарядов;
- режим насыщения — оба p-n -перехода открыты;
- активный режим — один из p-n -переходов открыт, а другой закрыт.
В режимах отсечки и насыщения управление транзистором практически отсутствует. В активном режиме транзистор выполняет функцию активного элемента электрических схем усиления сигналов, генерирования колебаний, переключения и т. п.
Если на эмиттерном переходе напряжение прямое, а на коллекторном обратное, то такое включение транзистора считают нормальным, при противоположной полярности напряжений — инверсным.
Подав отрицательный потенциал ЭДС источника на коллектор и положительный на эмиттер (рис. 21) в схеме включения транзистора с общим эмиттером, мы, тем самым, открыли эмиттерный переход Э - Б и закрыли коллекторный Б - К, при этом ток коллектора I К0 = I Э0 = I 0 мал, он определяется концентрацией неосновных носителей (электронов в данном случае). Если между эмиттером и базой приложить небольшое напряжение (0,3-0,5 В) в прямом направлении p-n -перехода Э - Б, то происходит инжекция дырок из эмиттера в базу, образуя ток эмиттера - I. В базе дырки частично рекомбинируют со свободными электронами, но одновременно от внешнего источника напряжения Е Б (Е Б < Е R) в базу приходят новые электроны, образуя ток базы I Б.
|
|
Рисунок 21-Схема включения биполярного транзистора
Так как база в транзисторе выполняется в виде тонкого слоя, то только незначительная часть дырок рекомбинирует с электронами базы, а основная их часть достигает коллекторного перехода. Эти дырки захватываются электрическим полем коллекторного перехода, являющегося ускоряющим для дырок. Ток дырок, попавших из эмиттера в коллектор, замыкается через резистор RK и источник напряжения с ЭДС ЕK, образуя ток коллектора I К во внешней цепи.
Запишем соотношение токов в схеме включения транзистора (рис. 21), называемой схемой включения с общим эмиттером (ОЭ),
Отношение тока коллектора к току эмиттера называют коэффициентом передачи тока
откуда ток базы
Схема включения транзистора с ОЭ является наиболее распространенной вследствие малого тока базы во входной цепи и усиления входного сигнала как по напряжению, так и по току. Основные свойства транзистора определяются соотношениями токов и напряжений в различных его цепях и взаимным их влиянием друг на друга.
Транзистор может работать на постоянном токе, малом переменном сигнале, большом переменном сигнале и в ключевом (импульсном) режиме.
Семейства входных
и выходных
статических характеристик транзистора в схеме с ОЭ представлены на рис. 22. Они могут быть получены в результате эксперимента или расчёта.
Рисунок 22 - Семейства входных и выходных статических характеристик
Семейства характеристик, которые связывают напряжения и токи на выходе с токами и напряжениями на входе, называют характеристиками передачи или управляющими характеристиками (рис 23).
Рисунок 23-Характеристика передачи
Биполярные транзисторы классифицируют:
- по мощности рассеяния (маломощные (до 0,3 Вт), средней мощности (от 0,3 Вт до 1,5 Вт) и мощные (свыше 1,5 Вт));
- по частотным свойствам (низкочастотные (до 3 МГц), средней частоты (3_30 МГц), высокой (30_300 МГц) и сверхвысокой частоты (более 300 МГц));
- по назначению: универсальные, усилительные, генераторные, переключательные и импульсные.
При маркировке биполярных транзисторов вначале записывают букву или цифру, указывающую на исходный полупроводниковый материал: Г или 1 — германиевый, К или 2 — кремниевый; затем цифру от 1 до 9 (1, 2 или 3 — низкочастотные, 4, 5 или 6 — высокой частоты, 7, 8 или 9 — сверхвысокой частоты соответственно в каждой группе малой, средней или большой мощности). Следующие две цифры от 01 до 99 —порядковый номер разработки, а в конце буква (от А и выше) указывает на параметрическую группу прибора, например, на напряжение питания транзистора и т. п.
Например, транзистор ГТ109Г: низкочастотный германиевый, малой мощности с коэффициентом передачи тока h 21 Э = 100_250, UК = 6 В, IК = 20 мА (ток постоянный).
Полевой транзистор
Полевой транзистор — это полупроводниковый прибор, в котором ток стока (С) через полупроводниковый канал п- или р -типа управляется электрическим полем, возникающим при приложении напряжения между затвором (З) и истоком (И).
Полевые транзисторы изготавливают:
- с управляющим затвором типа p-n-перехода для использования в высокочастотных (до 12_18 ГГц) преобразовательных устройствах. Условное их обозначение на схемах приведено на рис. 24, а, б;
- с изолированным (слоем диэлектрика) затвором для использования в устройствах, работающих с частотой до 1_2 ГГц. Их изготавливают или со встроенным каналом в виде МДП_структуры (см. их условное обозначение на рис. 24, в и г), или с индуцированным каналом в виде МОП_структуры (см. их условное обозначение на рис. 24, д, е).
|
|
Рисунок 24-Виды полевых транзисторов
Схема включения полевого транзистора с затвором типа p-n- перехода и каналом n -типа, его семейство выходных характеристик IС = f (UС), UЗ = const и стокозатворная характеристика IC = f (UЗ), UС = const изображены на рис. 25.
Рисунок 25 - Схема включения полевого транзистора и его стокозатворной характеристикой
При подключении выходов стока С и истока И к источнику питания Un по каналу n - типа протекает ток IC, так как p-n- переход не перекрывает сечение канала (рис. 25, а).
При этом электрод, из которого в канал входят носители заряда, называют истоком, а электрод, через который из канала уходят основные носители заряда, называют стоком.
Электрод, служащий для регулирования поперечного сечения канала, называют затвором. С увеличением обратного напряжения UЗ уменьшается сечение канала, его сопротивление увеличивается, и уменьшается ток стока IC.
Итак, управление током стока IC происходит при подаче обратного напряжения на p-n -переход затвора З. В связи с малостью обратных токов в цепи затвор-исток, мощность, необходимая для управления током стока, оказывается ничтожно малой.
При напряжении -UЗ = -UЗО, называемым напряжением отсечки, сечение канала полностью перекрывается обеднённым носителями заряда барьерным слоем, и ток стока ICО (ток отсечки) определяется неосновными носителями заряда p-n -перехода (см. рис. 25, б).
Схематичная структура полевого транзистора с индуцированным n- каналом представлена на рис 26. При напряжении на затворе относительно истока, равным нулю, и при наличии напряжения на стоке, ток стока оказывается ничтожно малым. Заметный ток стока появляется только при подаче на затвор напряжения положительной полярности относительно истока, больше так называемого порогового напряжения UЗПОР.
|
|
Рисунок 26-Схематичная структура полевого транзистора с индуцированным n-каналом
При этом в результате проникновения электрического поля через диэлектрический слой в полупроводник при напряжениях на затворе, больших UЗПОР, у поверхности полупроводника под затвором возникает инверсный слой, который и является каналом, соединяющим исток со стоком.
Толщина и поперечное сечение канала изменяются с изменением напряжения на затворе, соответственно будет изменяться ток стока. Так происходит управление тока стока в полевом транзисторе с индуцированным затвором. Важнейшей особенностью полевых транзисторов является высокое входное сопротивление (порядка нескольких мегаом) и малый входной ток. Одним из основных параметров полевых транзисторов является крутизна S стоко-затворной характеристики (см. рис. 25, в). Например, для полевого транзистора типа КП103Ж S = (3...5) мА/В.
Читайте также про:
- Типы биполярных транзисторов и их диодные схемы замещения.
- Полевые транзисторы с изолированным затвором.
- Силовые (мощные) полевые транзисторы. IGBT-транзистор.
- Транзисторы со статической индукцией.