Классификация магнетиков

Все существующие в природе вещества по своим магнитным свойствам подразделяются на пять видов магнетиков: диамагнетики, парамагнетики, ферромагнетики, антиферромагнетики и ферримагнетики (ферриты). В связи с тем что магнитную активность проявляют все вещества без исключения, можно утверждать, что магнитные свойства веществ определяются элементарными частицами, входящими в состав каждого атома. Такими одинаковыми для всех веществ частицами являются электроны, протоны и нейтроны. Исследования показали, что магнитные моменты протона и нейтрона почти на три порядка ниже наименьшего магнитного момента электрона, поэтому в первом приближении можно пренебречь магнитным моментом ядра, состоящего из протонов и нейтронов, и полагать, что магнитные свойства атома в целом определяются электронами. Это положение является фундаментальным в электронной теории магнетизма, которая общепринята в учении о магнетизме.

Каждый атом вещества представляет собой динамическую систему, состоящую из ядра и электронного облака. Каждый электрон обладает определенным спиновым магнитным моментом и орбитальным магнитным моментом . С некоторой степенью упрощения можно сказать, что спиновый магнитный момент обусловлен вращением электрона вокруг собственной оси, а орбитальный − движением электрона по некоторой замкнутой орбите внутри атома. Следовательно, полный магнитный момент атома будет представлять собой геометрическую сумму орбитальных и спиновых магнитных моментов электронов, относящихся к данному атому

, (7.1)

где z − число электронов в атоме.

Рассмотрим макроскопические характеристики твердых тел, связанные с характером взаимодействия магнитных моментов с внешним полем и определяющие принадлежность данного вещества к одному из видов магнетиков [38].

В любом веществе, внесенном в магнитное поле, возникает суммарный магнитный момент , который складывается из сумм магнитных моментов , связанных с отдельными частицами (атомами, молекулами).

. (7.2)

Размерность магнитного момента в системе «СИ» − Вольт×секунда×метр [В×с×м] или Вебер×метр [Вб×м].

Одна из основных характеристик магнетиков – их намагниченность

. (7.3)

Намагниченность j − векторная величина, модуль которой равен магнитному моменту единицы объема вещества. Намагниченность растет с ростом индукции магнитного поля (или напряженности ) в соответствии с законом

, (7.4)

где магнитная постоянная, относительная магнитная проницаемость, которая показывает, во сколько раз магнитная индукция поля в данной среде больше или меньше, чем в вакууме (в вакууме = 1), æмагнитная восприимчивость вещества, характеризующая способность данного вещества намагничиваться полем напряженности .

Величины æ и являются скалярными, и магнитная восприимчивость æ для различных веществ может принимать значения как больше, так и меньше нуля. Руководствуясь этим свойством, вещества можно разделить на пара-, диа- и ферромагнетики.

Если магнитная восприимчивость принимает положительные значения (æ > 0), то вектор намагниченности (из формулы 7.4) сонаправлен вектору напряженности внешнего магнитного поля ( ). Такие вещества относятся к парамагнетикам.

Если магнитная восприимчивость æ < 0, то векторы намагниченности и напряженности направлены противоположно друг другу ( ), что характерно для диамагнетиков.

Как правило, по абсолютной величине магнитная восприимчивость парамагнетиков больше, чем диамагнетиков. Зависимость намагниченности этих типов магнетиков от величины напряженности магнитного поля линейна (рис. 7.1), и при отсутствии внешнего поля она равна нулю.

Интересно, что линейная зависимость для парамагнетиков имеет место только в области слабых полей и высоких температур. В сильных полях и при низких температурах выходит на насыщение (рис. 7.2).

 

Рис. 7.1. Зависимость намагниченности от напряженности магнитного поля: 1-диамагнетика; 2 - парамагнетика Рис. 7.2. Зависимость намагниченности от напряженности магнитного поля в сильных полях и при низких температурах выходит на насыщение

 

Кроме двух рассмотренных видов магнетиков, имеется также достаточно большая группа веществ, обладающих спонтанной намагниченностью. Они называются ферромагнетиками и имеют отличную от нуля магнитную восприимчивость ( ) даже в отсутствие внешнего поля. Механизм намагничивания ферромагнетиков оказывается довольно сложным, и полный цикл намагниченности ферромагнетиков описывается петлей гистерезиса (рис. 7.3).

В ряде кристаллов направления вектора магнитной индукции и напряженности магнитного поля не совпадают. В этом случае магнитная проницаемость вещества является тензорной величиной, т. е. зависит от направления внутри кристалла. Такие вещества называются магнитно-анизотропными. Мы будем рассматривать здесь только магнитно-изотропные вещества, для которых магнитная проницаемость − простое число.

Найдем связь между магнитной проницаемостью и восприимчивостью вещества. Величина магнитной индукции связана с напряженностью поля соотношением

. (7.5)

 

Рис. 7.3. Петля гистерезиса в ферромагнетиках

 

Для ферромагнетика результирующее поле в нем, которое и является магнитной индукцией, можно определить как

: (7.6)

поле в ферромагнетике складывается из напряженности внешнего магнитного поля и намагниченности , создающей внутреннее магнитное поле. Тогда из формул (7.6), (7.5) и

(7.4) получим

, следовательно , . (7.7)

Выше было сказано, что магнитный момент атомов связан с движением электронов относительно своей оси и их орбитальным движением. Следовательно, существует некая жесткая связь между механическими и магнитными характеристиками атомов. Эта связь задается так называемыми гиромагнитными соотношениями. Обозначим орбитальный механический момент электрона , а спиновый механический момент электрона . Пользуясь обозначениями магнитных моментов, заданными в формуле (7.1), запишем гиромагнитные соотношения

; , (7.8)

где е − заряд электрона, а т − его масса.

Следуя первому постулату Бора, согласно которому орбитальный момент количества движения электрона должен быть квантован и кратен величине (постоянной Планка, деленной на 2 π), можно сделать вывод, что квантован и орбитальный магнитный момент . Элементарный магнитный момент атома с одним электроном, движущимся по первой орбитали, называется магнетоном Бора:

.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: