Последовательность выполнения работы. 1 определить междувитковые замыкания в обмотках асинхронного электродвигателя

1 Определить междувитковые замыкания в обмотках асинхронного электродвигателя:

1.1 Методом индуктированных напряжений (рисунок 5.1а).

Обмотки фаз разъединить и к одной из обмоток (С1—С4) подвести напряжение, равное 36 В, а в двух других фазах вольтметром измерить индуктированные напряжения. Затем поочередно подать напряжение на обмотки (С2—С5) и (С3—С6), а вольтметром измерить напряжение на свободных выводах обмоток.

В обмотке с междувитковым замыканием в замкнутом контуре возникает противо-ЭДС и индуктированное напряжение уменьшается. Измерение выполнить для двух электродвигателей (исправного и с дефектом). Результаты измерений занести в таблицу 5.1.

Таблица 5.1 - Результаты измерений методом индуктированных напряжений

№ п.п.     Наименование     Напряжение, подводимое к обмоткам, В, Напряжение, измеренное на выводах обмоток, В Вывод о витковых замыканиях в обмотках
С25 С36 С14 С36 С14 С25
  Эл. двигат. № 1                
  Эл. двигат. № 2                
                   

 

1.2 Методом измерения токов (рисунок 5.1б).

При соединении обмоток статора в звезду с тремя выводными концами невозможно определить витковые замыкания методом индуктированных напряжений. В этом случае используют «метод токов». В каждую фазу включить амперметр и произвести замер тока на работающем электродвигателе. Наибольший ток покажет амперметр, включенный в фазу с поврежденными витками. При соединении обмоток в треугольник наибольший ток покажут два амперметра обмотки с короткозамкнутыми витками (рисунок 1в).

Примечание: 1. При наличии токоизмерительных клещей замер токов произвести клещами, что значительно уменьшит время на выполнение этой операции. 2. Замерить вольтметром напряжение на клеммах электродвигателя и убедиться в его симметрии. Результаты измерений занести в таблицу 5.2 и сделать вывод.

Таблица 5.2 - Результаты измерений методом измерения токов

 

 

№ эл. двиг. Измеренные величины Вывод о наличии витковых замыканий
U (С12), В U (С13), В U (С23), В I А, А I В, А I С, А
№ 1              
№ 2              
               

 

1.3 Определить витковые замыкания в асинхронном электродвигателе с помощью специального прибора типа СМ-1, СМ-2 или ЕЛ-1 (при наличии в лаборатории), в соответствии с инструкцией к нему (рисунок 5.1 г).

Принцип действия аппаратов следующий. К аппарату подсоединяют две обмотки, в которые поочередно посылают импульсы напряжения высокой частоты. Если параметры обмоток совершенно одинаковы (нет витковых замыканий), то одинаковыми будут и импульсы тока в этих обмотках. При таком положении кривые на экране электронно-лучевой трубки, относящиеся к двум сравниваемым цепям, сольются.

Примечание. В настоящее время освоен выпуск прибора для диагностирования межвитковой изоляции ВЧФ-5-3, при наличии его в лаборатории можно использовать в лабораторной работе.

По результатам проведенных исследований сделать выводы.

2. Состояние изоляции обмоток (увлажненность обмоток или развивающийся дефект) наиболее точно определить высоким выпрямленным напряжением с измерением токов утечки по схеме (рисунок 5.2).

Для исследования состояния изоляции используют те же два двигателя, из которых один с нормальной изоляцией, а другой увлажненный или с развивающимся дефектом.

2.1. Собрать схему (рисунок 5.2), где указаны: QS — рубильник, TUV — ЛАТР, ТV — трансформатор повышающий, с первичной обмоткой 220 В и вторичной обмоткой 400…1500 В, VД1—VД4 — выпрямитель, R — токоограничивающее сопротивление, С — сглаживающий пульсации фильтр, РV2 — киловольтметр, РА — микроамперметр с пределами измерения до 1000 мкА (необходимо иметь сменный прибор миллиамперметр, с пределами измерения до 10 mА), КН — реле защиты (использовать блинкер, то есть указательное реле, своим же контактом разрывающее цепь, с номиналом по 0,05 А), SВ— кнопка, включаемая на момент замера токов утечки, М — испытуемый электродвигатель,

2.2. Выполнить измерение на двух двигателях:

а) абсолютное значение токов утечки;

б) степень ассиметрии токов утечки по фазам;

в) значение приращения токов утечки при увеличении напряжения;

г) отсутствие или наличие бросков и колебаний тока утечки при повышении напряжения.

Результаты измерения занести в таблицу5.3.

 

 

Рисунок 5.1 – Схема для определения витковых замыканий в асинхронном электродвигателе

 

 

Таблица 5.3- Результаты измерений выпрямленным напряжением с измерением токов утечки

№ п.п.   Наименование Подводимое напряжение к обмоткам, В Измеренные токи утечки по фазам Аcсиметрия токов утечки различных фаз     Допустимое максимальное значение то­ков утечки, mА Дополнитель­ные сведения по рез. испытания  
Iу(С14), mА Iу(С25), mА Iу(С36), mА  
D I1, mА D I2, mА D I3, mА  
  Двиг. № 1                    
  Двиг. № 2                    
                         

 

Сделать вывод об увлажненности обмоток и развивающемся дефекте.

При наличии стенда с выпрямленным напряжением можно провести дополнительные исследования состояния изоляции электродвигателя.

Примечание.

1. Разница в значениях токов утечки разных фаз не должна превышать 11,5

2. Исходя из требований ПТЭ я ПТБ для электродвигателей, находящихся в эксплуатации, допустимое сопротивление изоляции, измеренное мегомметром на 500 Вольт, должно быть не менее 0,5 МОм. В соответствии с этим допустимый ток утечки при напряжении 500 В должен быть не более 1 mА (1000 mкА).

А (5.1)

 

где U — приложенное напряжение к обмоткам. В;

Rдоп.дв — допустимое сопротивление изоляции = 0,5 МОм (500000 Ом).

По результатам проведенных исследований сделать выводы.

3. Проверить техническое состояние короткозамкнутых обмоток роторов двух двигателей, в одном из которых имеет место обрыв стержня.

Собрать схему (рисунок 5.3). На обмотку электродвигателя подать напряжение 36 В (можно без латра). Провернуть медленно ротор на один оборот, записать значение тока и количество отклонений стрелки амперметра. Повторить измерение на втором электродвигателе. Результаты измерений записать в таблицу 5.4.

Таблица5.4 – Результаты измерений

 

№ п.п. Наименование, Величина тока, А Кол-во полных колебаний (отклонение стрелки амперметра)
  Эл. двигатель 1    
  Эл. двигатель 2    
       

 

Сделать вывод о наличии обрыва стержней.

4. Определить техническое состояние подшипников двух электродвигателей (в одном из которых подшипник с дефектом) с помощью стетоскопа.

Весьма эффективным способом определения технического состояния подшипников является прослушивание их шумов стетоскопом. Стетоскопы бывают мембранные, электрические и обычные. В мембранном стетоскопе стержень упирается в мембрану, колебание которой усиливает звук.

 

Рисунок 5.2- Принципиальная электрическая схема для измерения сопротивления изоляции обмоток

Рисунок 5.3 - Принципиальная электрическая схема проверки технического состояния короткозамкнутых обмоток роторов двигателя

 

В электрическом стетоскопе имеется вибродатчик, изготовленный на основе пьезоэлектрического телефона и преобразующий механические колебания в электрические. Обычный стетоскоп состоит из стержня с наушником.

В первое время после пуска электродвигателя шум подшипников еще не незначительный, поэтому прослушивают его не ранее, чем через 15 мин. после включения электродвигателя в сеть.

Свистящий звук при работе электродвигателя свидетельствует о недостаточном количестве или о загрязнении смазки подшипников. Иногда вследствие неудовлетворительной смазки шум подшипников может переходить в глухой прерывистый звук.

Поврежденный сепаратор издает звуки, похожие на грохот.

Дефекты на дорожках, шариках и роликах подшипников также вызывают повышенный шум. Особенно влияет на шум и вибрацию подшипников волнистость на дорожках качения. Даже небольшие волны высотой 0,5 мк могут быть причиной шума. Сделать вывод о техническом состоянии подшипников.

ВЫВОДЫ И АНАЛИЗЫ

По результатам диагностирования двух электродвигателей сделать заключение об их техническом состоянии. Дать рекомендации по устранению выявленных неисправностей и указать, в каких условиях можно устранить выявленные неисправности (на месте, текущий ремонт, капитальный ремонт).

 

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Назовите основные неисправности, возникающие у асинхронных электродвигателей в процессе эксплуатации.

2. Какие неисправности асинхронных электродвигателей можно определить без разборки?

3. Укажите методы определения неисправностей без разборки электродвигателя.

4. Укажите, из чего складывается уменьшение трудозатрат (чел.-ч) при диагностике электродвигателя.

5. Как часто выполняют диагностирование электродвигателей в условиях эксплуатации?

6. Как отличить увлажненность изоляции от развивающегося дефекта при диагностировании по токам утечки?

7. Какое влияние оказывают на работу электродвигателя обрывы стержней ротора?


Приложение 1 (справочное) «Руководство по эксплуатации трансформаторов серии ТМ, ТМГ, ТМФ и ТМГФ мощностью 25 - 1600 кВА класса напряжения до 10 КВ»

 

Настоящее руководство по эксплуатации распространяется на стационарные масляные понижающие трехфазные двухобмоточные силовые трансформаторы общего назначения мощностью 25, 40, 63, 100, 160, 250, 400, 630, 1000 и 1600 кВА на напряжение 6 и 10 кВ. РЭ содержит техническое описание, инструкцию по эксплуатации и приложения. Трансформаторы соответствуют требованиям ГОСТ 11677-85 "Трансформаторы силовые. Общие технические условия", ТУ 16-93 ВГЕИ.672133.002 ТУ "Трансформаторы серии ТМ, ТМГ, ТМФ и ТМГФ мощностью 25 -1600 кВА класса напряжения до 10 кВ. Технические условия".

При эксплуатации изделий дополнительно необходимо пользоваться «Правилами устройств электроустановок» издание 6е (ПУЭ), РД 34.45-51.300-97 «Объем и нормы испытаний электрооборудования» (Нормы испытаний), «Правилами технической эксплуатации электрических станций и сетей РФ» (ПЭЭП), РД 153-34.003.150-2000 «Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок» и местными инструкциями.

Назначение

1.1. Трансформаторы серии ТМ, ТМГ, ТМФ и ТМГФ на напряжение 6,10 кВ предназначены для питания потребителей электроэнергии общего назначения.

1.2. Трансформаторы предназначены для эксплуатации в районах с умеренным климатом на открытом воздухе (исполнение У1 по ГОСТ 15150-69), при этом:

- окружающая среда не взрывоопасная, не содержащая токопроводящей пыли;

- высота установки над уровнем моря не более 1000 м;

- режим работы длительный;

- температура окружающей среды от минус 45 °С до плюс 40 °С;

- трансформаторы не предназначены для работы в условиях тряски, вибраций, ударов, в химически активной среде.

1.3. Условное обозначение типов трансформаторов:

Пример записи условного обозначения трансформатора мощностью 25 кВА герметичного исполнения с высшим напряжением 10кВ низшим напряжением 0.4кВ, схемой и группой соединения У/Ун-0, климатического исполнения У, категории размещения I при его заказе и в документации другого изделия - "Трансформатор типа ТМГ-25/10-У1;10/0,4кВ; У/Ун-0,ТУ 16-93 ВГЕИ.672133.002 ТУ".

Технические данные

2.1. Тип трансформатора, обозначение поставочного документа (ТУ), значение номинальной мощности, номинальных напряжений на всех ответвлениях обмотки высшего напряжения, номинальных токов, напряжение короткого замыкания, ток и потери холостого хода, потери короткого замыкания, схема и группа соединения обмоток, другие технические данные указаны на паспортной табличке и в паспорте трансформатора.

2.2. Схема общего вида, габаритные, установочные размеры приведены на сайте производителя.

2.3. Регулирование напряжения осуществляется переключением без возбуждения ответвлений обмотки ВН ступенями по 2.5%.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: