Преимущества и недостатки термосифонов

По сравнению с обычными циркуляционными трубами, термосифоны имеют следующие преимущества :

· За счёт повышения площади нагрева, возрастает общее парообразование котла;

· Усиливается циркуляция воды, что также повышает парообразование, а заодно ещё сильней снижает тепловые напряжения в обшивке котла;

· Снижение опасности повреждения топки в случае понижения уровня воды в котле ниже критического.

Из недостатков термосифонов стоит отметить следующие:

· Заметное повышение (в 2—2,5 раза) влажности пара, что требует установки более развитых паросушителей;

· Также повышенная влажность пара приводит к сильному падению перегрева, что приводит к падению КПД паровоза в целом;

· Снижение температуры горячих газов в топке (термосифон действовал как радиатор), что также снижало экономичность паровоза.

Стоит отметить, что использующие термосифоны американские паровозы имели очень большие площади колосниковых решёток(до 17 м²) и поэтому снижение теплоэфективности от применения термосифонов на них было не столь заметно. Совсем иные обстоятельства были на советских и европейских паровозах, чьи колосниковые решётки имели площадь не более 7,5—8 м², из-за чего влияние термосифонов было куда сильнее.

Структура трубчатого печного агрегата.

Трубчатые печи широко применяются на предприятиях нефтеперерабатывающей, нефтехимической, химической и газовой промышленности. Они используются для огневого нагрева, испарения и разложения нефти и продуктов ее переработки, а также для химического превращения ряда нефтепродуктов в процессах термического крекинга, висбрекинга, пиролиза, в которых печь выполняет технологические функции реактора. Сжигание топлива в трубчатых печах производится в специальных устройствах (горелки, форсунки), установленных в камере сгорания. Подвод тепловой энергии к нагреваемому продукту осуществляется тремя видами теплообмена: теплопроводностью, конвекцией и тепловым излучением. Большая часть тепла передается излучением, поэтому камера сгорания называется радиантной.

Трубчатая печь обычно содержит две секции: камеру сгорания или радиации, в горелках которой сжигается топливо и размещаются радиантные трубы, и камеру конвекции, в которую поступают продукты сгорания топлива (дымовые газы) и в которой размещаются конвективные трубы. Радиантные и конвективные трубы длиной 3…24 м при помощи фитингов или двойников образуют змеевик для нагреваемого продукта. Трубы радиантного змеевика, воспринимающие лучистую энергию при горении топлива, называют экраном. Радиантная камера отделена от конвективной перевальной стеной.

Основные типы трубчатых печей нефтегазопереработки.

КОНВЕКТИВНЫЕ ПЕЧИ

Конвективные печи — это один из старейших типов печей. Практически в настоящее время эти печи не применяются, так как по сравнению с печами радиационными или радиационно-конвективными они требуют больше затрат как на их строительство, так и во время эксплуатации. Исключение составляют только специальные случаи, когда необходимо нагревать чувствительные к температуре вещества сравнительно холодными дымовыми газами. Печь состоит из двух основных частей — камеры сгорания и трубчатого пространства, которые отделены друг от друга стеной, так что трубы не подвергаются прямому воздействию пламени и большая часть тепла передается нагреваемому веществу путем конвекции. Чтобы предотвратить прожог первых рядов труб, куда поступают сильно нагретые дымовые газы из камеры сгорания, и чтобы коэффициент теплоотдачи удерживался в пределах, приемлемых u1087 по технико-экономическим соображениям, при сжигании используется значительный избыток воздуха или 1,5…4-кратная рециркуляция остывших дымовых газов, отводимых из трубчатого пространства и нагнетаемых воздуходувкой снова в камеру сгорания. Одна из конструкций конвективной печи показана на рис. 2.72.Дымовые газы проходят через трубчатое пространство сверху вниз. По мере падения температуры газов соответственно равномерно уменьшается поперечное сечение трубчатого пространства, при этом сохраняется постоянная объемная скорость продуктов сгорания.

РАДИАЦИОННЫЕ ПЕЧИ

В радиационной печи все трубы, через которые проходит нагреваемое вещество, помещены на стенах камеры сгорания. Поэтому у радиационных печей камера сгорания значительно больше, чем у конвективных. Все трубы подвергаются прямому воздействию газообразной среды, которая имеет высокую температуру. Этим достигается: а) уменьшение общей площади теплоотдачи печи, так как количество тепла, отданного единице площади труб, путем радиации при одинаковой температуре среды (особенно при высоких температурах этой среды), значительно больше, чем количество тепла, которое можно передать путем конвекции;

б) хорошая сохранность футеровки за трубчатыми змеевиками, благодаря тому что снижается ее температура, во-первых, за счет прямого закрытия части ее трубами, во-вторых, за счет отдачи тепла излучением футеровкой более холодным трубам. Обычно нецелесообразно закрывать все стены и свод трубами, так как этим ограничивается теплоизлучение открытых поверхностей, а в результате уменьшается общее количество тепла, отдаваемого единицей площади труб. Например, у современных типов кубовых печей отношение эффективной открытой поверхности к общей внутренней поверхности печи колеблется в пределах 0,2…0,5.Чисто радиационные печи из-за простоты конструкции и большой тепловой нагрузки труб имеют самые низкие капитальные u1079 затраты на единицу переданного тепла. Однако они не дают возможности использовать тепло продуктов сгорания, как это имеет место y радиационно-конвективных печей. Поэтому радиационные печи работают с меньшей

тепловой эффективностью. Радиационные печи применяются при нагреве веществ до низких температур (приблизительно до 300 °С), при небольшом их количестве, при необходимости использования малоценных дешевых топлив и в тех случаях, когда особое значение придается низким затратам на сооружение печи.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: