Технические характеристики СГ

Синхронные генераторы, вращаемые паро- и газо­выми турбинами, назы­ваются турбо­генера­торами, а враща­емые гидрав­лическими тур­бинами — гидро­генера­торами. Турбогенератор, вращаемый паровой или газовой турбиной, имеет горизонтально расположенный вал, опирающийся на два подшипника скольжения. Гидрогенератор имеет вертикально ориентированный вал и «подвешен» на подпятник, воспринимающий не только массы генератора, гидротурбины, но и осевое давление воды на лопасти гидротурбины.

Масса электрической машины возрастает с уменьшением частоты ее вращения. Гидрогенераторы имеют частоту вращения примерно в 6—60 раз меньшую, чем турбогенераторы. Эта разница обусловлена различием типов применяемых в этих машинах паровых, газовых и гидравлических турбин, а также зависит от характера используемых для ГЭС водных источников (расход воды, уклон водопотока, рельеф местности при учете экономической целесообразности эксплуатируемой зоны). Из-за более низких частот вращения гидроагрегатов общие массы гидрогенераторов достигают 1,5—2 тыс. т и в несколько раз превышают массы аналогичных по мощности турбогенераторов, делая невозможным применение горизонтального расположения валов с более простыми подшипниками скольжения.

Диаметры роторов турбогенераторов на 3000 об/мин не превышают 1,1—1,25 м при длине ротора до 8 м. Роторы гидрогенераторов достигают в диаметре 15—20 м при длине до 5 м.

В настоящее время на тепловых электрических станциях России эксплуатируется около 1200 турбогенераторов суммарной мощностью около 150 ГВт (150 тыс. МВт). Все турбогенераторы — отечественного производства. Большая часть общей мощности (около 60 %) — это турбогенераторы мощностью 100—320 МВт. Распределение турбогенераторов по группам мощностей приведено в табл. 3.1. По сравнению с США структура мощностей турбогенераторов России несколько сдвинута в область меньших мощностей (100—200 МВт). В США доля установленной мощности блоков 300—500 МВт составляет 40 %, что несколько больше, чем в России (30 %).

 

 

Мощности турбогенераторов по группам
Таблица 3.1 Группа Диапазон мощностей турбогенераторов, МВт Суммарная мощность турбогенераторов, ГВт
  25—63 33,5
  100—200 54,5
  300—500 46,1
    12,8
  более 1000 1,2
  Итого 148,1 ГВт

 

Большинство отечественных турбогенераторов имеет большую надежность, чем аналогичные в США, но несколько меньшую, чем турбогенераторы новейших серий фирм ABB и Siemens/KWU.

В последние 30—40 лет в мире имел место рост единичной мощности турбогенераторов, который приводил к снижению удельных затрат материалов генераторов на единицу мощности, удельных капиталовложений при сооружении станции и стоимости электроэнергии. Например, удельные капиталовложения на 1 кВт установленной мощности для турбогенератора 200 МВт почти в 2,5 раза меньше, чем для турбогенератора мощностью 32 МВт. Коэффициент полезного действия (КПД) турбогенераторов мощностью 1200 МВт примерно равен 99 %, однако, отводимые в виде теплоты потери в нем достигают 12 000 кВт, что требует обеспечения интенсивного охлаждения.

В последние годы рост единичных мощностей турбогенераторов замедлился по причинам технического характера, которые связаны с необходимостью внедрения сложных методов охлаждения, ограничениями по механическим напряжениям ротора и вибрациям. Принципиально электромашиностроение способно создать генераторы мощностью 2000—2500 МВт, однако социально-экономические последствия аварийного выхода из строя такого агрегата пока лишают актуальности задачу применения машин такой единичной мощности.

В качестве охлаждающих агентов в турбогенераторах применяются воздух, водород, дистиллированная вода и трансформаторное масло.

На 64 гидроэлектростанциях России мощностью 30 МВт и более работают 395 агрегатов общей мощностью около 44 ГВт (44 тыс. МВт) (табл. 3.4).

 

Мощность гидрогенераторов
Таблица 3.4 Группа Диапазон мощностей генераторов, МВт Суммарная мощность генераторов, ГВт
  до 49 6,60
  50—99 6,64
  100—199 6,94
  200—300 11,42
  500 и более 12,40
  Итого 44,00

 

Основная доля вырабатываемой гидроэлектростанциями электроэнергии (54,2 %) в России приходится на гидрогенераторы большой мощности (200—640 МВт). Из 120 ГЭС в мире мощностью 1000 МВт и более российских — 10, т.е. одна двенадцатая часть. Однако использование гидро­потенциала по нашей стране неравномерное: в европейской части страны оно составляет 46,4 %, в Сибири 19,7 %, в восточных регионах только 3,3 % и в среднем по стране около 20 %. Экономически целесообразный к использованию гидропотенциал страны составляет 850 млрд кВт · ч в год, что примерно в 5 раз больше возможностей сегодняшних ГЭС. Во Франции и Германии степень использования экономически целесообразного гидропотенциала более 90 %, в Японии — 84 %, в США — 73 %, Испании — 63 % и т.д.

Мощности единичных гидроагрегатов определяются прежде всего параметрами источников гидроэнергии, однако в настоящее время имеется тенденция увеличения мощности применяемых гидрогенераторов. Рекордными по полной или кажущейся (измеряемой в мегавольт-амперах — MB · А) мощности гидрогенераторами могут быть названы машины ГЭС Итайпу (Бразилия) — 823,6 MB · А, Саяно-Шушенской ГЭС (Россия) — 820 MB · А, 142,8 об/мин, Гранд-Кули (США) — 600 MB · А, 73,2 об/мин.

Обычно в гидрогенераторах используется воздушное и водяное охлаждение (косвенное, форсированное или непосредственное). При непосредственном охлаждении охлаждающий агент (воздух или жидкость) непоредственно соприкасается с проводниками, отводя от них теплоту. Эффективность охлаждения резко возрастает, если в качестве охлаждающего агента применяется вода. Непосредственное водяное охлаждение обмотки статора впервые в мире было применено на гидрогенераторах Красноярской ГЭС. Зарубежные фирмы также уделяют много внимания проблемам использования непосредственного водяного охлаждения гидрогенераторов. Водой могут охлаждаться не только обмотки статора и ротора, но и сердечники статора, его нажимные плиты.

КПД гидрогенераторов весьма высок. При больших мощностях он достигает 97—98,7 %.

Большая доля отечественных гидрогенераторов отработала уже 30 лет и более. Ввод новых мощностей в последние 20 лет существенно отстает от среднего мирового уровня. Доля гидрогенераторов со сроком службы менее 30 лет в мире составляет около 65 %, в России только 40 %. Для 77 % отечественных гидрогенераторов по ГОСТ уже истек нормативный срок службы.

Зарубежный опыт многих стран показывает, что полная замена гидрогенераторов может быть экономически выгодной только для машин малой мощности, для остальной же части более целесообразна модерниза­ция действующего оборудования.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: