Модулирующая система мозга

Блок модулирующих систем мозга регулирует тонус коры и подкорковых образований. Он оптимизирует уровень бодрствования в отношении в отношении выполняемой деятельности и обусловливает адекватный выбор поведения в соответствии с актуализированной потребностью. Только в условиях оптимального бодрствования человек может наилучшим образом принимать и перерабатывать информацию, вызывать в памяти нужные избирательные системы связей, программировать деятельность, осуществлять контроль над ней.

И.П.Павлов неоднократно возвращался к вопросам о решающей роли в реализации полноценной условнорефлекторной деятельности оптимального тонуса мозговой коры, необходимости высокой подвижности нервных процессов, позволяющих с лёгкостью переходить от одной деятельности к другой. В условиях оптимальной возбудимости коры нервные процессы характеризуются известной концентрированностью, уравновешенностью возбуждения и торможения, способностью к дифференцировке и, наконец, высокой подвижностью нервных процессов, которые обусловливают протекание каждой организованной целенаправленной деятельности.

Аппаратом, исполняющим роль регулятора уровня бодрствования, а также осуществляющим избирательную модуляцию и актуализацию приоритета той или иной функции, является модулирующая система мозга. Её часто называют лимбико-ретикулярный комплекс или восходящая активирующая система. К нервным образованиям этого аппарата относятся лимбическая система и неспецифическая система мозга. С их помощью нижележащие модулирующие аппараты таламического и стволового отделов вовлекаются в реализацию этих процессов, и таким образом обеспечивается достаточный уровень активности для осуществления сложных форм высшей нервной (психической) деятельности.

А). Стволово-таламо-кортикальная система

Исследования Д.Моруцци и Г.Мэгуна привели их к открытию в стволе на уровне среднего мозга неспецифической системы, или мезенцефалической ретикулярной формации, активирующей кору больших полушарий. Они установили, что высокочастотная электрическая стимуляция стволовой РФ вызывала увеличение бдительности животного и пробуждение его ото сна; низкочастотная стимуляция оказывала противоположное действие, вызывая состояние покоя, а разрушение неспецифической системы ствола мозга приводило животное в коматозное состояние.

Позже неспецифическая система была найдена в таламусе. Вначале казалось, что эта система распространяет на кору исключительно синхронизирующие ритмические влияния, так как легко воспроизводит ритм низкочастотного электрического раздражения неспецифических ядер таламуса, широко распространяя его на кору. Однако Г.Джаспер обнаружил, что сенсорное раздражение вызывает локальное и модально-специфическое подавление искусственно вызванных потенциалов «вовлечения». Он сформулировал свою теорию о диффузно-проекционной таламической системе, согласно которой неспецифические ядра таламуса влияют на кору, вызывая ЭЭТ — десинхронизацию в виде разрушения регулярной медленно волновой активности. Таламическая неспецифическая система создает локальную активацию коры, проецируясь к ее отдельным зонам, воспринимающим сенсорные сигналы от модально-специфических путей. Это отличает ее от РФ ствола мозга, вызывающей генерализованную активацию, которая захватывает обширные зоны коры. Последняя более длительна и менее устойчива к угашению при многократном воспроизведении одним и тем же стимулом по сравнению с реакцией активации таламического происхождения. Эти различия позволяют связывать функцию стволовой неспецифической системы с поддержанием в мозге определенного уровня фоновой активности, а таламическую неспецифическую систему — с селективным вниманием и локальным ориентировочным рефлексом. Вместе с тем, при выполнении человеком задания, требующего бдительности и внимания, таламическая и стволовая РФ действуют совместно — в обеих структурах наблюдается одновременное увеличение локального мозгового кровотока.

Нейроны коры во время ЭЭТ — десинхронизации обнаруживают признаки активации в виде:

1) снижения порога возбудимости нейронов на адекватное раздражение;

2) усиления свойства полимодальности — под влиянием неспецифической активации нейрон начинает отвечать на стимулы тех модальностей, которые он игнорировал в отсутствии активации;

3) увеличения лабильности, которое может быть измерено по укорочению циклов восстановления вызванных потенциалов и по изменению частотного состава реакции усвоения ритма сенсорного раздражения биотоками мозга. Все эти эффекты наблюдаются вместе с увеличением негативности постоянного потенциала коры, представляющим механизм медленной модуляции ФС.

Вместе с тем ФС нейронов определяется не только сдвигом постоянного потенциала, но и ритмической модуляцией, создаваемой основными ритмами биотоков мозга. Показано, что максимальная возбудимость сенсорных нейронов и выполнение двигательных реакций синхронизированы с определенной фазой альфаритма у человека и тета-ритма у животных. Ритмическая активность мозга, синхронизируя во времени возбудимость удаленных нейронов, создает условия для их взаимодействия в процессе реализации той или иной функции, а также при обучении.

Исследование влияний таламуса на кору показано существование в нем нейронных пейсмекеров для низкочастотных ритмов. Они были найдены в его специфических ядрах и в неспецифическом таламусе. При спокойном состоянии животного эти нейроны имеют тенденцию разряжаться последовательностью пачек спайков. Пачечные разряды нейронов таламуса имеют фазовую специфичность.

Сенсорные раздражения (звуковые, кожные и др.) вызывают в неспецифическом таламусе реакцию десинхронизации в виде разрушения пачек спайков и замены их одиночными спайками. Нейронная таламическая реакция десинхронизации соответствует появлению в коре ЭЭГ — реакции активации.

Таким образом, таламические структуры мозга работают в двух режимах: в режиме пачечных разрядов, вызывая в ЭЭГ, синхронизированные и ритмические колебания, и в режиме десинхронизации пачек спайков. Последнему режиму соответствует появление ЭЭГ — реакции активации. У человека она обычно выглядит в виде подавления, блокады альфаритма, который замещается иррегулярной активностью низкой амплитуды. Именно поэтому ее часто рассматривали как выражение десинхронизации регулярной нейронной активности.

Новый взгляд на механизм ритмической активности нейронов связан с открытием разнопороговой кальциевой проводимости. Установлено, что высокопороговые кальциевые каналы в основном представлены на дендритах, тогда как низкопороговые локализованы преимущественно на соли клеток. Оптимальными условиями для срабатывания низкопороговых кальциевых каналов являются гиперполяризационные изменения мембранного потенциала. Высокопороговые кальциевые каналы реагируют на возбужденный сигнал, если он приходит на фоне деполяризации ее мембранного потенциала. А то, что разнопороговые кальциевые каналы представлены на одном нейроне, определяет его способность генерировать ритмическую активность в двух частотных диапазонах. Переход от генерации ритма в одном частотном диапазоне к другому диапазону связан со сменой локуса активации кальциевых каналов на нейроне. Выбор каналов для активации определяется уровнем мембранного потенциала. Два режима генерации ритмической активности в зависимости от уровня мембранного потенциала описаны для нейронов таламуса. Если клетка слегка деполяризована, то она работает на частоте 10 Гц, а если она гиперполяризована, то разряжается пачками спайков с частотой 6 Гц. М.Стериаде подчеркивает особую роль в генезе корковых 40-герцевых ритмов интраламинарных ядер таламуса. Выделены нейроны, которые во время бодрствования и быстрого сна разряжаются пачками спайков с необычно высокой частотой потенциалов действия изнутри пачки (800 — 1000 Гц). Частота следования пачек составляет 20 — 40 Гц, она регулируется величиной сдвига мембранного потенциала в сторону деполяризации. Чем он больше, тем больше частота осцилляций. Генерацию интраламинарными ядрами 40-герцевого ритма связывают с появлением у них резонансного состояния, которое обеспечивает широкое распространение гамма колебаний по коре.

Усиление 40-герцевого ритма в коре имеет холинергическую природу так же, как и реакция ЭЭТ — десинхронизации. Холинергические системы распространяют свою модуляцию во время бодрствования и быстрого сна. Это два состояния, при которых быстрые кортикальные ритмы присутствуют в коре.

Передача информации о сенсорных сигналах осуществляется в результате согласованного взаимодействия специфической и неспецифической систем мозга. На уровне таламуса специфическая система представлена релейными специфическими и ассоциативными ядрами. Неспецифическую систему образует несколько групп ядер. Неспецифические нейроны таламуса, так же как и стволовой РФ, не получают прямого входа от сенсорных органов, а лишь от коллатералей специфических путей.

Активирующие влияния от неспецифической системы сходятся с влияниями специфических систем на клетках коры. Слияние этих двух потоков — необходимое условие для восприятия и осознания действующего стимула.

Исследования показали, что опознание буквы и цифры в трудных условиях наблюдения происходит, если реакция этих нейронов длится не менее 300 мс. При изучении вызванных потенциалов на предъявление осознаваемых и неосознаваемых слов, неосознаваемый стимул вызывает диффузную слабую активацию коры больших полушарий, чем слово, которое осознается.

Утверждение, что ретикулярная формация среднего мозга имеет прямой выход на кору и поэтому прямо влияет на проведение сигнала к коре получено в поведенческих и физиологических опытах. Высокочастотная электрическая стимуляция (100 — 300 Гц)
ретикулярной формации ствола вызывает снижение сенсорных порогов.

Данные об основных медиаторных системах мозга позволяют предположить холинергическую основу реакции активации. В мозге выделено четыре основных медиаторных системы: ДА - ергическая, НА - ергическая, серотонинергическая и холинергическая.
Кора получает широкие проекции от дофаминергических, норадреналинергических и серотонинергических афферентов.
Но эти системы не обнаружили корреляции с ЭЭГ — активацией, вызываемой электрическим раздражением РФ среднего мозга. Увеличение кортикальной активации связано с увеличением высвобождения ацетилхолина (АХ) в коре. Таким образом, неспецифическая система ствола мозга действует на кору через холинергические афференты. Конечное звено корковой активации холинергично и представлено мускариновыми (М) — рецепторами нейронов коры, реагирующими на ацетилхолин.

Это доказывает локальное приложение ацетилхолина к коре, которое оказывает возбуждающее действие примерно на 50% корковых нейронов и которое блокируется атропином, избирательно действующим на М-рецеторы. Установлено, что сенсорное раздражение разной модальности увеличивает количество высвобождающегося ацетилхолина из нейронов коры. Наоборот, с деафферентацией животного уменьшается содержание свободного АХ в коре. Увеличение АХ в жидкости, омывающей поверхность коры, отличается во время ЭЭГ-активацию. Кроме того, активация коры при парадоксальном сне также связана с увеличением содержания АХ в коре.

Б). Базальная холинергическая система переднего мозга

Недавно было показано, что магноцеллюлярные нейроны, содержащие ацетилхолин и локализованные в базальном переднем мозге моносинаптически проецируются на кору. Они участвуют в регуляции сна, бодрствования и причастны к возникновению реакции активации. Холинергическая часть переднего мозга в основном представлена базальным ядром Мейнерта (NB).

Электрическая стимуляция базального ядра (NB) и др. высвобождает в коре АХ у наркотизированной крысы и увеличивает кровоток в коре. Эффект блокируется антагонистами мускариновых рецепторов, т.е. существует холинергическая иннервация сосудов коры, которая обусловливает их расширение. Активирующая система холинергических нейронов переднего мозга представлена нейронами, связанными с бодрствованием. Уровень их возбуждения меняется параллельно с поведенческой активностью животного. Частота их спайковых разрядов увеличивается во время бодрствования и особенно во время движения, а также в парадоксальном сне. В медленном сне их активность уменьшается. При этом, как и в таламусе, режим одиночных потенциалов действия сменяется пачечной активностью.

Состояние нейронов, связанных с бодрствованием, находится под контролем неспецифических систем активации среднего мозга и моста через глутаматовые рецепторы, а также со стороны заднего латерального гипоталамуса, который также имеет проекцию на кору и принимает участие в ЭЭГ - и поведенческой активации.

Концепция холинергических нейронов БПМ как источника кортикальной активации, поддерживающего бодрствование, должна быть дополнена представлением о существовании специального холинергического механизма. Этот механизм обеспечивающего дополнительное высвобождение АХ в локальных участках коры, которые реагируют на стимулы, связанные с подкреплением. Показано, что значительная часть нейронов БПМ реагирует активацией на условные раздражители, связанные с наградой, и не реагирует на условные сигналы наказания. Это механизм избирательного внимания к значимым стимулам, который обеспечивает их обработку в соответствующих областях коры.

Можно предположить, что дефицит когнитивных функций, наблюдающийся при болезни Альцгеймера, которую связывают с поражением холинергической системы БПМ, скорее опосредован нарушением именно механизма избирательной активации. Опыты с фармакологическим отключением БПМ у животных показали нарушение поведения. Животные не могут выполнять приобретенные ими навыки, включая прохождение различных лабиринтов, заученное пассивное и активное избегание.

Создавая локальную активацию в коре, холинергические нейроны БПМ взаимодействуют с таламокортикальной неспецифической системой.

В БПМ функция регуляции активации сосуществует с функцией управления сном. Активирующая холинергическая система БПМ находится под тормозным контролем гипногенного механизма. Кроме того, медиальная преоптическая область и передний гипоталамус, контролируя сон, действуют на холинергическую систему БПМ через тормозные синапсы.

В). Каудо-таламо-кортикальная система.

К регуляции уровня активности организма имеют отношение и базальные ганглии. Другое их название — стриопаллидарная система, которая представляет собой комплекс нейрональных узлов, центрально расположенных в белом веществе больших полушарий головного мозга. Имеются доказательства роли хвостатого ядра в регуляции уровня «готовности», «внимания» и «бодрствования».

Любому состоянию человека или любому виду деятельности соответствует своя картина распределения активации по участкам неокортекса, которую можно наблюдать на ЭЭГ. При этом ведущая роль в формировании избирательной активации неокортекса, определяющей избирательность восприятия и действий, принадлежит стриопаллидарной системе, которая сама находится под контролем коры. Именно она распределяет активационные ресурсы мозга, которые не безграничны.

Выходы стриатума участвуют в регуляции мышечного тонуса через нисходящие пути в спинной мозг и в распределении восходящей в кору неспецифической активации. В результате влияния стриатума на таламус картина распределения активации в нем соответствует мотивационному возбуждению и кортикофугальным сигналам, поступающим в стриатум. На уровне коры это трансформируется в распределение активации, которое отвечает требованиям поставленной задачи и реализации целенаправленного поведения.

Модулирующие нейроны

В нервной системе выделена особая группа клеток — модулирующих нейронов, которые сами не вызывают реакции, но регулируют активность других нейронов. Они образуют контакты с другими нейронами типа «синапс на синапсе». Модулирующие нейроны причастны к регуляции болевой чувствительности. Синаптическая передача болевых сигналов в головной мозг, опосредуемая веществом Р, находится под контролем нейропептидов, подавляющих болевые сигналы. В задних рогах спинного мозга вставочные модулирующие нейроны, выделяющие нейропептид — энкефалин, образуют синапсы на аксонных окончаниях болевых нейронов. Энкефалин тормозит выход вещества Р, что уменьшает возбуждение постсинаптического нейрона, посылающего в головной мозг сигналы о боли.

Модулирующие нейроны участвуют в процессе научения, изменяя проводимость синапса на пресинаптическом уровне. Эффект пресинаптической пластичности, создаваемый модулирующими нейронами, может быть начальным звеном в цепи событий, приводящих к пластической модификации поведения, связанной с выработкой условных рефлексов. Безусловное подкрепление как очень сильный раздражитель нейрона также возбуждает модулирующие нейроны и тем самым инициирует процесс пресинаптических изменений. За последним этапом следует этап клеточных и молекулярных преобразований постсинаптического нейрона, характеризующий ассоциативное обучение.

Однако, пресинаптическое облегчение, создаваемое модулирующими нейронами, может возникать и вне ситуации ассоциативного обучения только за счет активации модулирующих нейронов сильными сенсорными раздражителями.

Другое название этого явления — сенситизация или неассоциативное обучение. Оно отличается от ассоциативного обучения, основанного на «пре- и постсинаптическом совпадении».

Описано два механизма длительного пресинаптического облегчения под влиянием двух типов ионных каналов: кальциевых и калиевых.

Участие кальциевых каналов в механизме повышения проводимости через синапс выглядит следующим образом. Во время потенциала действия ионы кальция и натрия входят в клетку, а ионы калия выходят из нее. Когда нейрон находится в активном состоянии, в нем увеличивается уровень содержания ионов кальция. Кальций, вошедший в клетку, действует на нее после того, как связывается с белком — кальмодулином. Этот комплекс, так же как серотонин, активирует аденилатциклазу. За счет двойного воздействия на нее резко увеличивается образование АТФ и САМР (активаторы протеинкиназы). Протеинкиназа фосфорилирует рецепторные белки кальциевых каналов. Это переводит кальциевые каналы в активное состояние — в клетку входит больше кальция, что увеличивает выделение из нее медиатора. Одновременно протеинкиназа фосфорилирует белки калиевых каналов. Это ведет к уменьшению проводимости для ионов калия, т.е. уменьшению калиевого тока, что ограничивает калиевую гиперполяризацию.

Таким образом, потенциал действия продлевается, а это, в свою очередь, увеличивает продолжительность активного состояния кальциевых каналов.

Особую функцию в модуляции возбудимости нервной системы выполняют пейсмекерные нейроны. Будучи активированными, они своими длительными разрядами могут повышать проводимость сигнала через синапс. Специальный тип пейсмекерных нейронов, генерирующих разряды на частоте гамма-колебаний, отражают колебания кальциевого тока на дендритах клеток таламуса, синхронизирует активность больших массивов нейронов, объединенных общими резонансными свойствами.

Литература:

[1] Стр. 166—179.

Лекция 25


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: