Частица в бесконечно глубокой одномерной потенциальной яме

Зададим потенциальную функцию U(x) в виде U(x)=∞ при х<0 x>a. U(x)=0 при 0≤х≤a. Такое потенциальное поле называется потенциальной ямой. Т.к. яма бесконечно глубокая, то за её пределы частица выйти не может и следовательно вероятность обнаружить частицу в области 1 и 3 =0.=> в области 1 и 3 ψ(х)=0.

Т.к. волновая функция должна быть непрерывной, то ψ(0)= ψ(a)=0. Запишем уравнение Шредингера для области 2: d(c.2)ψ/dx(c.2) + (2m/h(в)(с.2))*E ψ = 0

Обозначим k(c. 2)= (2m/h(в)(с.2))*E.

Ψ’’+ k(c. 2)Ψ=0. – волновое уравнение, решением которого является функция вида: ψ(х)=b*sin(kx+α). Из условия ψ(0)=b*sin(0+α)=0, sin(0+α), α=0. ψ(a)=b*sin(ka+α)=0//b<>0=>ka=πn, где n=1,2,3,…=>

k=πn/a, где n=1,2,3,… π(c.2)n(c.2)/a(c.2)=2mE/h(в)(с.2)=>

E=π(c.2)*h(в)(с.2)n(c.2)/2ma(c.2).

Частицы внутри потенциальной ямы могут только дискретный ряд значений, т.е. частицы в потенциальной яме квантуются. n-главное квантовое число, оно определяет энергию микрочас-цы. b определим из условия нормировки волновой функции: =>b= . Волновая функция частицы внутри потенциальной ямы имеет вид: ψ(х)= √(2/a) sin(πnx/a).

 

Состав и строение атомных ядер. Ядерные силы. Энергия связи ядер. Радиоактивность. Законы смещения при радиоактивных превращениях. Ядерные реакции.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: