Специфичность ферментов

Ферменты обладают высокой специфичностью действия. По этому свойству они часто существенно отличаются от неорганических катализаторов. Так, мелкоизмельченные платина и палладий могут катализировать восстановление (с участием молекулярного водорода) десятков тысяч химических соединений различной структуры. Высокая специфичность ферментов обусловлена, как было упомянуто выше, конформационной и электростатической комплементарностью между молекулами субстрата и фермента и уникальной структурой активного центра фермента, обеспечивающими "узнавание", высокое сродство и избирательность протекания одной какой-либо реакции из тысячи других химических реакций, осуществляющихся одновременно в живых клетках. В зависимости от механизма действия различают ферменты с относительной или групповой специфичностью и с абсолютной специфичностью. Так, для действия некоторых гидролитических ферментов наибольшее значение имеет тип химической связи в молекуле субстрата. Например, пепсин расщепляет белки животного и растительного происхождения, хотя они могут существенно отличаться друг от друга как по химическому строению и аминокислотному составу, так и по физикохимическим свойствам. Однако пепсин не расщепляет углеводы или жиры. Объясняется это тем, что местом действия пепсина является пептидная - СО-NH-связь. Для действия липазы, катализирующей гидролиз жиров на глицерин и жирные кислоты, таким местом является сложноэфирная связь. Аналогичной групповой специфичностью обладают трипсин, химотрипсин, пептидазы, ферменты, гидролизующие α-гликозидные связи (но не β-гликозидные связи, имеющиеся в целлюлозе) в полисахаридах и т. д. Обычно эти ферменты участвуют в процессе пищеварения, и их групповая специфичность, вероятнее всего, имеет определенный биологический смысл. Аналогичной относительной специфичностью обладают также некоторые внутриклеточные ферменты, например гексокиназа, катализирующая в присутствии АТФ фосфорилирование почти всех гексоз, хотя одновременно в клетках имеются и специфичные для каждой гексозы ферменты, выполняющие такое же фосфорилирование.

Абсолютной специфичностью действия называют способность фермента катализировать превращение только единственного субстрата. Любые изменения (модификации) в структуре субстрата делают его недоступным для действия фермента. Примером таких ферментов могут служить аргиназа, расщепляющая в естественных условиях (в организме) аргинин, уреаза, катализирующая распад мочевины, и др. Например, фумараза катализирует превращение только фумаровой кислоты (трансизомер), но не действует на малеиновую кислоту (цисизомер).

Таким образом, благодаря специфичности действия ферменты обеспечивают протекание с высокой скоростью лишь определенных реакций из огромного разнообразия возможных превращений в микропространстве клеток и целостном организме, регулируя тем самым интенсивность обмена веществ.

13. Иммобилизованными ферментами называются ферменты, искусственно связанные с нерастворимым носителем, но сохраняющие свои каталитические свойства. Начало этому направлению биотехнологии было положено в 1916 году, когда Дж.Нельсон и Е.Гриффин адсорбировали на угле инвертазу и показали, что она сохраняет в таком виде каталитическую активность.

В настоящее время в понятие «иммобилизация» вкладывают более широкий смысл – полное или частичное ограничение свободы движения белковых молекул.

Иммобилизованные ферменты имеют ряд преимуществ в сравнении со свободными молекулами:

· представляют собой гетерогенные катализаторы, легко отделяемые от реакционной среды, что дает возможность остановить реакцию в любой момент, использовать фермент повторно, а также получать чистый от фермента продукт;

· могут использоваться многократно и обеспечивают непрерывность каталитического процесса;

· изменяют свои свойства: субстратную специфичность, устойчивость, зависимость активности от параметров среды;

· долговечны в тысячи и десятки тысяч раз стабильнее свободных энзимов.

Все перечисленное обеспечивает высокую экономичность, эффективность и конкурентоспособность технологий, использующих иммобилизованные ферменты.

Иммобилизовать ферменты можно как путем связывания на нерастворимых носителях, так и путем внутримолекулярной или межмолекулярной сшивки белковых молекул низкомолекулярными бифункциональными соединениями, а также путем присоединения к растворимому полимеру.

Носители для иммобилизации ферментов. К носителям предъявляются следующие требования:

· высокая химическая и биологическая стойкость;

· высокая химическая прочность;

· достаточная проницаемость для фермента и субстратов, пористость, большая удельная поверхность;

· возможность получения в виде удобных в технологическом отношении форм (гранул, мембран);

· высокая гидрофильность; · невысокая стоимость

Органические полимерные носители. Существующие органические полимерные носители можно разделить на два класса: природные (белковые, полисахаридные и липидные) и синтетические полимерные носители (полиметиленовые, полиамидные и полиэфирные).

Преимущества природных носителей: доступность, полифункциональность и гидрофильность; недостатки: биодеградируемость и высокую стоимость.

Из полисахаридов для иммобилизации наиболее часто используют целлюлозу, декстран, агарозу и их производные. Для придания химической устойчивости линейные цепи целлюлозы и декстрана поперечно сшивают эпихлоргидрином. В полученные сетчатые структуры вводят различные ионогенные группировки. Химической модификацией крахмала сшивающими агентами (формальдегид, глиоксаль, глутаровый альдегид) синтезирован новый носитель – губчатый крахмал, обладающий повышенной устойчивостью к гликозидазам.

Из природных аминосахаридов в качестве носителей применяют хитин. Хитин химически стоек и имеет хорошо выраженную пористую структуру.

Среди белков в качестве носителей применяют структурные протеины, – кератин, фиброин, коллаген и желатина (продукт переработки коллагена). Белки способны к биодеградации, что очень важно при конструировании иммобилизованных ферментов для медицинских целей. К недостаткам белков как носителей в этом случае следует отнести их высокую иммуногенность.

 

  

 

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: