Нахождение статических моментов и центра тяжести плоской фигуры

 

 

Рассмотрим плоскую фигуру  (чертёж 14), ограниченную сверху кривой AB, которая задана явным уравнением . Предположим, что вдоль по этой фигуре равномерно распределены массы, так что (чертёж 14) поверхностная площадь их  (т.е. масса, приходящаяся на единицу площади) постоянна. Можно принять, что =1, т.е. что масса любой части нашей фигуры измеряется её площадью. Это всегда и подразумевается, если говорят просто о статических моментах (или о центре тяжести) плоской фигуры.

Чтобы определить статические моменты  и  этой фигуры относительно осей координат, выделим какой-нибудь элемент нашей фигуры в виде бесконечно узкой вертикальной полоски (см. чертёж). Приняв эту полоску приближённо за прямоугольник, видим, что масса её (выражаемая тем же числом, что и площадь) будет . Для определения соответствующих элементарных моментов  и  предположим всю массу полоски сосредоточенной в её центре тяжести (т.е. в центре прямоугольника), что, как известно, не изменяет величины статических моментов. Полученная материальная точка отстоит от оси x на расстоянии , от оси y – на расстоянии ; последнее выражение можно заменить просто через x, ибо отброшенная величина , умноженная на массу , дала бы бесконечно малую второго порядка. Итак, имеем , . Просуммировав эти элементарные моменты, придём к результатам

 

, , (14)

 

причём под y разумеется функция .

Как в случае кривой, по этим статическим моментам рассматриваемой фигуры относительно осей координат легко определить теперь и координаты ,  центра тяжести фигуры. Если через P обозначить площадь (а следовательно, и массу) фигуры, то по основному свойству центра тяжести


 

, , откуда

, . (15)

 

И в данном случае мы получаем важное геометрическое следствие из формулы для ординаты  центра тяжести. В самом деле, из этой формулы имеем .

Правая часть этого равенства выражает объём V тела, полученного от вращения плоской фигуры  около оси x (формула 6: ), левая же часть выражает произведение площади этой фигуры P на  - длину окружности, описанной центром тяжести фигуры. Отсюда вторая теорема Гульдина:

Объём тела вращения плоской фигуры около не пересекающей её оси равен произведению площади этой фигуры на длину окружности, описанной центром тяжести фигуры: .

Заметим, что формулы (14),(15) распространяются на случай фигуры, ограниченной кривыми и снизу и сверху (чертёж 2). Например, для этого случая , . (14а)

Если вспомнить формулу (2), то легко усмотреть, что теорема Гульдина справедлива также и для этого случая.

Примеры:

1). Найти статические моменты ,  и координаты центра тяжести фигуры, ограниченной параболой , осью x и ординатой, соответствующей абсциссе x. Так как , то по формулам (14)

, .

 

С другой стороны, площадь (по формуле 1) .

В таком случае, по формулам (15), ,.

Пользуясь значениями  и , легко найти – по теореме Гульдина – объём тела вращения рассматриваемой фигуры вокруг осей координат или вокруг конечной ординаты. Например, если остановиться на последнем случае, так как расстояние центра тяжести от оси вращения есть , то искомый объём будет .

2). Найти центр тяжести фигуры, ограниченной ветвью циклоиды ,  и осью x. Воспользовавшись п.1.1. 4) и п.1.2. 2), по теореме Гульдина легко установить . По симметрии .


Механическая работа

 

Пусть точка M движется по прямой (этим случаем мы ограничимся для простоты), причём на перемещении s на неё вдоль той же прямой действует постоянная сила F. Из элементов механики известно, что тогда работа W этой силы выразится произведением . Чаще, однако, случается, что величина силы остаётся постоянной, а непрерывно меняется от точки к точке, и для выражения работы снова приходится прибегнуть к определённому интегралу.


 

 

Пусть путь s, проходимой точкой, будет независимой переменной. При этом предположим, что начальному положению A нашей точки M соответствует значение , а конечному B – значение  (чертёж 15). (чертёж 15)

Каждому значению s в промежутке  отвечает определённое положение движущейся точки, а также определённое значение величины F, которую, таким образом, можно рассматривать как функцию от s. Взяв точку M в каком-нибудь её положении, определяемом значением s пути. Найдём теперь приближённое выражение для элемента работы, соответствующего приращению  пути, от s до , при котором точка M перейдёт в близкое положение . В положении M на точку действует определённая сила F. Так как изменение этой величины при переходе точки из M в  - при малом  - также мало, пренебрежём этим изменением и, считая величину силы F приближённо постоянной, найдём для элемента работы на перемещении  выражение , так что вся работа W представится интегралом

 

. (16)

Пример. Применим в виде примера формулу (16) к вычислению работы растяжения (или сжатия) пружины с укреплённым одним концом (чертёж 16).

 


 

 

С этим приходится иметь дело, например, при расчёте буферов у железнодорожных вагонов.

Известно, что растяжение s пружины (если только пружина не перегружена) создаёт натяжение p, по величине пропорциональное растяжению, так что (чертёж 16) , где c – некоторая постоянная, зависящая от упругих свойств пружины («жёсткость» пружины). Сила, растягивающая пружину, должна преодолевать это натяжение. Если учитывать только ту часть действующей силы, которая на это затрачивается, то её работа при возрастании растяжения от  до  выразится так:

 

.

 

Обозначив через P наибольшую величину натяжения или преодолевающей её силы, соответствующую растяжению пружины (и равную ), мы можем представить выражение для работы в виде .

Если бы к свободному концу пружины сразу была приложена сила P (например, подвешен груз), то на перемещении S ею была бы произведена вдвое большая работа . Как видим, лишь половина пойдёт на сообщение пружине с грузом кинетической энергии.





Двойной интеграл


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: