Получение тепловой энергии при бактериальном окислении

Несколько в стороне от вышеописанных методов анаэробной биоконверсии биомассы в топливо стоит еще один микробиоло­гический процесс получения энергии — аэробное окисление твер­дой биомассы (отходов) с выделением больших количеств тепла.

Твердое органическое сырье погружается в шахту, снизу пода­ется воздух. В результате окислительных процессов, осуществля­емых микроорганизмами, происходит интенсивное выделение тепловой энергии и проходящие газы нагреваются до 80 °С. С помощью компрессии температуру газов можно увеличить до 100—110 °С и получаемую энергию аккумулировать в виде горя­чей воды или пара. Коэффициент полезного действия установок с учетом затрат электроэнергии на эксплуатацию воздуходувок составляет 95%. Такие установки промышленного типа работа­ют в Японии. Образующийся шлам используется в качестве вы­сокоэффективного органо-минерального удобрения.

Таким образом, биомасса при ее рациональном использовании может стать эффективным источником возобновления энергети­ческих ресурсов с использованием микробиологических процес­сов. Однако вклад биомассы в общую энергетику большинства развитых стран не превысит 10 %, в отдельных странах он может составить 25—30 %, но не более, так как в противном случае она перестает быть возобновляемым источником. Более перспектив­ным способом использования солнечной энергии является ее пря­мая конверсия в молекулярный водород при фотолизе воды.

ПОЛУЧЕНИЕ МОЛЕКУЛЯРНОГО ВОДОРОДА

Молекулярный водород считается наиболее перспективным видом топлива. По энергоемкости (в расчете на единицу массы) он превосходит все другие соединения, которые можно использо­вать в этих целях. Сжигание молекулярного водорода не сопро­вождается загрязнением среды большим количеством вредных веществ и, более того, ведет к регенерации воды. Водород может храниться, транспортироваться и легко преобразуется в электро­энергию с помощью топливных элементов.

 В настоящее время молекулярный водород используется в ряде областей химической промышленности. Особенно много его расходуется при переработке нефти, синтезе метанола, а также аммиака, соединения которого используются в качестве удобрений. Кроме того, молекулярный водород может обеспечивать как источник энергии рост ряда бактерий, некоторые из которых являются перспективными продуцентами биомассы, богатой белком, а также других практически важных продуктов. Среди микроорганизмов, способных использовать Н2, имеются аэробные и анаэробные виды, к последним, как уже говорилось, относятся многие метанобразующие бактерии.

Производство молекулярного водорода в развитых странах ежегодно составляет около 30 млн. т и продолжает увеличиваться.

Большую часть молекулярного водорода получают химическим путем, главным образом из природного газа (метана). Используют, кроме того, продукты газификации жидких и твердых топлив. Предложены также разные способы получения Н2 из воды. К ним относятся методы паровой конверсии природного газа и электролиза Н2, имеющие практическое применение. Но все эти способы производства молекулярного водорода требуют боль­шой затраты энергии и достаточно дороги. Помимо этого масштабы получения Н2 из метана и ряда других веществ ограничива­ются их запасами. Поэтому изыскание других, более дешевых способов получения молекулярного водорода и расширения на их основе его производства, а также областей применения является актуальной проблемой.

В последние годы большое внимание привлекают к себе мик­роорганизмы, способные к образованию Н2 в процессе своей жизнедеятельности. Таких микроорганизмов известно довольно мно­го, обнаруживаются все новые виды, выделяющие молекулярный водород. Среди них есть и хемотрофы, и фототрофы.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: