Дробно – линейная функция и ее график

Проблемно – реферативная работа

По алгебре и началам анализа

Графики дробно – рациональной функции

ученицы 11 класса А

Товчегречко Натальи Сергеевны

руководитель работы

Паршева Валентина Васильевна

учитель математики,

учитель высшей

квалификационной категории 

 

Северодвинск

2005 г.



Содержание

Введение 4

Основная часть. Графики дробно-рациональных функций. 6

1. Дробно – линейная функция и ее график. 6

2. Дробно-рациональная функция. 11

3. Ещё один приём построения графиков. 15

Заключение 17

Литература 18



Введение

Построение графиков функций одна из интереснейших тем в школьной математике. Один из крупнейших математиков нашего времени Израиль Моисеевич Гельфанд писал: «Процесс построения графиков является способом превращения формул и описаний в геометрические образы. Это – построение графиков – является средством увидеть формулы и функции и проследить, каким образом эти функции меняются. Например, если написано y=x2, то Вы сразу видите параболу; если y=x2-4, Вы видите параболу, опущенную на четыре единицы; если же y=4-x2, то Вы видите предыдущую параболу, перевернутую вниз. Такое умение видеть сразу и формулу, и ее геометрическую интерпретацию – является важным не только для изучения математики, но и для других предметов. Это умение, которое остается с Вами на всю жизнь, подобно умению ездить на велосипеде, печатать на машинке или водить машину».

На уроках математики мы строим в основном простейшие графики – графики элементарных функций. Только в 11 классе с помощью производной научились строить более сложные функции. При чтении книг:

1) Н.А. Вирченко, И.И. Ляшко, К.И. Швецов. Справочник. Графики функций. Киев «Наукова Думка» 1979 г.

2) В.С. Крамор. Повторяем и систематизируем школьный курс алгебры и начала анализа. Москва «Просвещение» 1990 г.

3) Ю.Н. Макарычев, Н.Г. Миндюк. Алгебра – 8 класс. Дополнительные главы к школьному учебнику. Москва «Просвещение», 1998 г.

4) И.М. Гельфанд, Е.Г. Глаголева, Э.Э. Шноль. Функции и графики (основные приемы). Издательство МЦНМО, Москва 2004 г.

5) С.М. Никольский. М.К. Потапов, Н.Н. Решетников, А.В. Шевкин. Алгебра и начала анализа: учебник для 11 класса.
я увидела, что графики сложных функций можно строить без использования производной, т.е. элементарными способами. Поэтому тему своего реферата я выбрала: «Графики дробно – рациональной функции».

Цель работы: изучить соответствующие теоретические материалы, выявить алгоритм построения графиков дробно-линейной и дробно-рациональной функций.

Задачи: 1. сформировать понятия дробно-линейной и дробно-рациональной функций на основе теоретического материала по данной теме; 2. найти методы построения графиков дробно-линейной и дробно-рациональной функций.




Основная часть. Графики дробно-рациональных функций

Дробно – линейная функция и ее график

С функцией вида y=k/x, где k≠0, ее свойствами и графиком мы уже познакомились. Обратим внимание на одну особенность этой функции. Функция y=k/x на множестве положительных чисел обладает тем свойством, что при неограниченном возрастании значений аргумента (когда x стремится к плюс бесконечности) значения функций, оставаясь положительными, стремятся к нулю. При убывании положительных значений аргумента (когда x стремится к нулю) значения функции неограниченно возрастают (y стремится к плюс бесконечности). Аналогичная картина наблюдается и на множестве отрицательных чисел. На графике (рис. 1) это свойство выражается в том, что точки гиперболы по мере их удаления в бесконечность (вправо или влево, вверх или вниз) от начала координат неограниченно приближаются к прямой: к оси x, когда │x│ стремится к плюс бесконечности, или к оси y, когда │x│ стремится к нулю. Такую прямую называют асимптотами кривой.

Рис. 1

Гипербола y=k/x имеет две асимптоты: ось x и ось y.

Понятие асимптоты играет важную роль при построении графиков многих функций.

Используя известные нам преобразования графиков функций, мы можем гиперболу y=k/x перемещать в координатной плоскости вправо или влево, вверх или вниз. В результате будем получать новые графики функций.

Пример 1. Пусть y=6/x. Выполним сдвиг этой гиперболы вправо на 1,5 единицы, а затем полученный график сдвинем на 3,5 единицы вверх. При этом преобразовании сдвинутся и асимптоты гиперболы y=6/x: ось x перейдет в прямую y=3,5, ось y – в прямую y=1,5 (рис. 2).

Функцию, график которой мы построили, можно задать формулой

.

Представим выражение в правой части этой формулы в виде дроби:

Значит, на рисунке 2 изображен график функции, заданной формулой

.

У этой дроби числитель и знаменатель - линейные двучлены относительно х. Такие функции называют дробно-линейными функциями.

рис. 2

Вообще функцию, заданную формулой вида , где
х – переменная, а, b, c, d – заданные числа, причем с≠0 и
bc-ad≠0, называют дробно-линейной функцией.

Заметим, что требование в определении о том, что с≠0 и
bc-ad≠0, существенно. При с=0 и d≠0 или при bc-ad=0 мы получаем линейную функцию. Действительно, если с=0 и d≠0, то

.

Если же bc-ad=0, с≠0, выразив из этого равенства b через a, c и d и подставив его в формулу, получим:

.

Итак, в первом случае мы получили линейную функцию общего вида , во втором случае – константу .

Покажем теперь, как строить график дробно-линейной функции, если она задана формулой вида

    Пример 2. Построим график функции , т.е. представим ее в виде : выделим целую часть дроби, разделив числитель на знаменатель, мы получим:

.

Итак, . Мы видим, что график этой функции может быть получен из графика функции у=5/х с помощью двух последовательных сдвигов: сдвига гиперболы у=5/х вправо на 3 единицы, а затем сдвига полученной гиперболы  вверх на 2 единицы.

При этих сдвигах асимптоты гиперболы у=5/х также переместятся: ось х на 2 единицы вверх, а ось у на 3 единицы вправо.

Для построения графика проведем в координатной плоскости пунктиром асимптоты: прямую у=2 и прямую х=3. Так как гипербола состоит из двух ветвей, то для построения каждой из них составим две таблицы: одну для х<3, а другую для x>3 (т. е. первую слева от точки пересечения асимптот, а вторую справа от нее):

x -7 -2 -1 0 1 2 2,5
y 1,5 1 0,75 0,33 -0,5 -3 -8

                    

x 3,5 4 5 6 7 8 13
y 12 7 4,5 3,33 3,25 3 2,52

Отметив в координатной плоскости точки, координаты которых указаны в первой таблице, и соединив их плавной линией, получим одну ветвь гиперболы. Аналогично (используя вторую таблицу) получим вторую ветвь гиперболы. График функции  изображен на рисунке 3.

рис. 3

Любую дробь  можно записать аналогичным образом, выделив ее целую часть. Следовательно, графики всех дробно-линейных функций являются гиперболами, различным образом сдвинутыми параллельно координатным осям и растянутыми по оси Оу.



Пример 3.

Построим график функции .

Поскольку мы знаем, что график есть гипербола, достаточно найти прямые, к которым приближаются ее ветви (асимптоты), и еще несколько точек.

Найдем сначала вертикальную асимптоту. Функция не определена там, где 2х+2=0, т.е. при х=-1. Стало быть, вертикальной асимптотой служит прямая х=-1.

Чтобы найти горизонтальную асимптоту, надо посмотреть, к чему приближаются значения функций, когда аргумент возрастает (по абсолютной величине), вторые слагаемые в числителе и знаменателе дроби  относительно малы. Поэтому

.

Стало быть, горизонтальная асимптота – прямая у=3/2.

Определим точки пересечения нашей гиперболы с осями координат. При х=0 имеем у=5/2. Функция равна нулю, когда 3х+5=0, т.е. при х=-5/3.

Отметив на чертеже точки (-5/3;0) и (0;5/2) и проведя найденные горизонтальную и вертикальную асимптоты, построим график (рис.4).

рис. 4

Вообще, чтобы найти горизонтальную асимптоту, надо разделить числитель на знаменатель, тогда y=3/2+1/(x+1), y=3/2 – горизонтальная асимптота.




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: