Тема 6.1. Теплоизоляционные материалы

Теплоизоляционные материалы характеризуются низкой тепло­проводностью, оценивающейся соответствующим коэффициентом, показывающим, какое количество тепловой энергии (Вт) пропус­кает 1 м2 материала толщиной в 1 м при перепаде температур в 1 °С в течение часа. Теплопроводность материалов в основном зависит от их пористости и влажности. Зависимость теплоизоляционных свойств материала от пористости обусловлена малой теплопровод­ностью воздуха, содержащегося в порах материала.

Теплоизоляционными материалами условно считаются те, по­ристость которых обеспечивает коэффициент теплопроводности меньше 0,21 Вт/(м • °С) и объемную массу не более 700 кг/м3.

Основные требования, предъявляемые к теплоизоляционным материалам: негигроскопичность, так как при увлажнении повыша­ется их теплопроводность; механическая прочность, которая дол­жна обеспечивать надежность материала при монтаже и эксплуата­ции; высокая биостойкость, исключающая гниение и порчу грызу­нами; химическая стойкость, обеспечивающая неразрушаемость под действием жидкостей и газов.

Теплоизоляционные материалы и изделия классифицируются: по виду исходного сырья, форме и строению материала; по назначе­нию и области применения.

По виду исходного сырья теплоизоляционные материала и из­делия разделяют на две группы — органические и неорганичес­кие.

К органическим теплоизоляционным материалам относятся дре­весноволокнистые, древесно-стружечные, торфяные и камышито­вые плиты, а также изделия из пластмасс.

К неорганическим теплоизоляционным материалам относятся ми­неральная вата и изделия из нее, стеклянная вата и изделия из нее, пеностекло, трепельные керамические изделия, асбестсодержащие изделия (асбестоцемештные, асбестодоломитовые, асбестомагнези- альные и т.д.), а также сыпучие теплоизоляционные материалы — керамзитовый гравий, вспученные вермикулит и перлит.

По форме теплоизоляционные материалы делят на штучные и сыпучие.

Штучные материалы (рис. 5.1) получают формованием и прида­нием им различных форм и размеров — плиты, маты, полуцилинд­ры, скорлупы, сегменты и др.

 

 

                

 

 

Рис. 5.1. Форглованные теплоизоляционные изделия: а Полуцилиндры; б — сегмент; в — сегмент, выпиленный из плиты; г — кирпич; д — плита


 

Сыпучие материалы получают в виде бесформенных масс волок­нистого строения или порошкообразных масс зернистого строения, а также в виде их смесей. Это керамзитовый гравий, вспученный вермикулит, необработанная (комковатая) или гранулированная минеральная вата, торфяная крошка, древесная шерсть.

Порошкообразные смеси, применяемые в виде мастик для тепло­изоляции трубопроводов и оборудования, также относят к сыпучим материалам. Например, для этих целей используют асбозурит, ас- бестотрепельный порошок.

Штучные (формованные) изделия подразделяют на жесткие и гиб­кие. К первым относят плиты, блоки, кирпич, скорлупы и др. (см. рис. 5Д)5 ко вторым — маты, войлоки, шнуры и т.п.

По типу применения материалы разделяют на две группы: для тепловой изоляции холодных поверхностей в зданиях (стен, пере­крытий) и для изоляции горячих поверхностей (теплопроводов, оборудования).

Деление теплоизоляционных материалов по виду применения можно считать условным, поскольку многие материалы, особенно неорганические, используют для теплоизоляции как строительных конструкций, так и промышленного оборудования. К таким мате­риалам относят минеральную и стеклянную вату, пеностекло, яче­истые бетоны и др. Для теплоизоляции промышленного оборудо­вания, работающего при более высоких температурах, чем строи­тельные конструкции, применяют, как правило, эффективные материалы с меньшим значением теплопроводности.

По структуре вещества (его строению) теплоизоляционные ма­териалы разделяют на несколько групп: ячеистые, волокнистые, зернистые, пластинчатые.

Строение материала влияет не только на его теплоизоляционные свойства, но и на другие показатели. На теплоизоляционные свой­ства материалов оказывает влияние их структура, особенно на ма­териалы волокнистого строения, так как теплопроводность поперек волокон значительно меньше, чем вдоль них (древесины, например, в 2 раза).

5.1.1. Органические теплоизоляционные материалы

Органические теплоизоляционные материалы изготовляются из растительного, животного или синтетического сырья.

К теплоизоляционным материалам на основе растительного сырья относятся торфяные плиты, изготовляемые из слаборазло- жившегося торфа с добавками, повышающими водо- и биостойкость и понижающими горючесть.

Температура применения ограничена + 100 °С. Основное назна­чение торфоплит — тепловая изоляция строительных конструкций, холодильного оборудования и трубопроводов с температурой до -60 °С.

Торфоплиты изготовляются мокрым и сухим способом и фор­муются размером 1000 х 500 х 30 мм, толщиной 60 и 90 мм.

Выпускают торфоплиты обыкновенные и с повышенной водо- и биостойкостью (табл. 5.1).

Таблица 5.1 Технические характеристики торфяных теплоизоляционных плит

Показатель Обыкновенные Специальные
Коэффициент теплопроводности, Вт/(м ■ "С) 0,058 0,0559
Объемная масса при влажности 15%, кг/м3 170 220
Предел прочности при изгибе, кПа/см2 300* 300

 

Материал хранится и транспортируется в жесткой таре в усло­виях, исключающих его увлажнение, повреждение и возможность возгорания.

Древесно-волокнистые плиты изготовляют из древесного волок­на с добавлением веществ, повышающих водостойкость, биостой­кость и огнестойкость.

Древесно-волокнистые плиты подразделяются на мягкие, полу­твердые, твердые и сверхтвердые.

Для целей теплоизоляции используют мягкие древесно-волокни­стые плиты, так как они обладают малой теплопроводностью. Мяг­кие плиты выпускают следующих марок: М-4, М-12, М-20 (табл. 5.2).

Таблица 5.2

Технические характеристики древесно-волокнистых мягких (изоляционных) плит

Показатель М-4 М-12 М-20
Коэффициент теплопроводности, Вт/(м • °С) 0,047 0,06 0,08
Объемная масса при влажности 15% кг/м3 150 350 350
Предел прочности при изгибе, кПа/см2 400 1200 2000

 

Древесно-волокнистые плиты выпускают следующих размеров, мм: длина 1200,1800,2500,2700,3000; ширина 1200,1700; толщина 8, 10, 12, 16, 25.

Пробковые плиты изготовляют из отходов пробкового производ­ства. Эти плиты обладают стойкостью против гниения, низким водопоглощением, малой объемной массой и достаточной огнестой­костью (не горят открытым пламенем, а лишь медленно тлеют), не поражаются домовым грибом и не повреждаются грызунами. Объемная масса пробковых плит 150—250 кг/м3, теплопроводность 0,047—0,093 Вт/(м • °С). Пробковые плиты вырабатывают размером 100 х 50 см, толщиной 25—125 мм.

Из-за высокой стоимости пробковых плит и дефицитности сы­рья (натуральная пробка — кора пробкового дуба) плиты применя­ют в особо ответственных случаях, например для теплоизоляции холодильников.

Теплоизоляционные материалы на основе синтетического сырья изготовляют различными способами из синтетических смол. Сырь­ем для их изготовления служат термопластичные (полистирольные, поливинилхлоридные, полиуретановые) и термореактивные (моче-виноформальдегидные) смолы, вспенивающие вещества, наполни­тели, пластификаторы и др.

Синтетические теплоизоляционные материалы делятся на дне группы в зависимости от структуры: пенопласты и поропласты.

Пенопласты характеризуются малой плотностью и наличием несообщающихся между собой полостей или ячеек, заполненных газом или воздухом. Поропласты имеют структуры пор, сообща­ющихся между собой.

Пенополистирол — теплоизоляционный материал из группы пенопластов, представляет собой твердую пену с равномерной пори­стой структурой. Пенополистирол выпускают в виде плит размером 1000 х 500 х 100 мм.

Наиболее часто применяются плиты ПСБС со следующими тех­ническими характеристиками: коэффициент теплопроводности 0,05 Вт/(м • °С); объемная масса 25-40 кг/м3; предел прочности при изгибе 70—180 кПа/см2; температура применения от—180 до +70 "С.

Эти плиты стойки к воде, кислотам, щелочам, растворимы в нитросоединениях (бензин, минеральные масла, эфир), сгораемы (самозатухающие). Применяются как эффективный утеплитель в холодильных установках, для теплоизоляции оборудования и стро­ительных конструкций.

Пенопласт ФРП-1 относится к трудносгораемым теплоизоляци­онным материалам. Это жесткий газонаполненный пластик, изго­товленный на основе фенолформальдегидной смолы, светло-корич- невого цвета, с мелкопористой однородной структурой.

Изделия из пенопласта ФРП-1 применяются для тепловой изо­ляции трубопроводов, прокладываемых в тепловых сетях подзем­ных прокладок, и в холодильной технике (с защитой от увлажнения), а также в строительных конструкциях. Материал изготовляется путем смешения двух жидких, взрывобезопасных и трудно воспламеня­емых компонентов в следующих соотношениях по массе: резольная смола (ФРВ-1) 4—6, отвердитель (ВАГ-3) — 1. Изготовленная таким способом композиция заливается в полости, образуемые между фор­мой, устанавливаемой на участке трубопровода, или опалубкой и изолируемой поверхностью оборудования. Заливаемая композиция вспенивается и отверждается в результате химической реакции в те­чение 6—8 мин.

Технические характеристики изделий из пенопласта марки ФРП-1: коэффициент теплопроводности, при температуре 20 °С— 0,045 Вт/(м • °С); плотность 40-60 кг/м3.

Изделия из пенопласта ФРП-1 выпускают в виде: полуцилинд­ров внутренним диаметром 45—273 мм; трети цилиндра внутренним диаметром 325—920 мм; четверти цилиндра внутренним диаметром 920—1020 мм. Длина этих изделий 1500 мм. Применяются они для тепловой изоляции теплопроводов.

Изделия из пенопласта при хранении предохраняются от увлаж­нения. Они транспортируются в деревянных ящиках.

Пенопласт плиточный марки ПХВ — жесткая, пористая по своей структуре пластмасса с замкнутыми порами, изготовляется на ос­нове поливинилхлорида. В зависимости от объемноймассы плиточ­ный пенопласт ПХВ выпускается четырех марок (табл. 5.3).

Таблица 5.3.Технические характеристики пенопласта плиточного ПХВ

Показатель ПХВ-1-85 ПВХ-1-115 ПХВ-2-150 ПХВ-2-195
Объемная масса, кг/м3 85 115 150 195
Коэффициент теплопроводности, Вт/(м • °С) 0,059 0,058 0,058 0,058
Предел прочности при изгибе, кПа/см2 400 700 800 1500

 

Размер поставляемых плит, мм: длина 520—750, ширина 520—750, толщина 35—70.

Плиты из пенопласта применяют для изоляции строительных конструкций и в холодильных установках (оборудование, трубопро­воды). Температура применения от—180 до +70°С.

Пенопласт пенополиуретановый марки ППУ-ЗН6 — газонапол­ненная мелкопористая жесткая пластмасса, получаемая в результа­те реакций между несколькими химикатами. Вспененная масса посредством пистолета наносится на изолируемые поверхности. Материал самозатухающий (при изъятии из пламени не горит).

Технические харатеристики пенопласта пенополиуретанового мар­ки ППУ-ЗН6: коэффициент теплопроводности 0,028-0,035 Вт/(м • °С); плотность 40—60 кг/м3; предел прочности при сжатии 200 кПа/см2 температура применения от—180 до +70°С.

Размеры выпускаемых плит 1000 х 1500 и 1000 х 2000 мм. Для снижения теплоотдачи лучистого тепла поверхность теплоизоляци­онных плит с одной или двух сторон защищают алюминиевой фоль­гой марок АО, АЮ толщиной от 5 до 40 мкм. Примером таких теп­лоизоляционных материалов с повышенным отражательным эф­фектом может служить Пенофол — полиэтиленовый вспененный лист (табл. 5.4).

Таблица 5.4 Технические характеристики Пенофола

Тип Толщина, мм Плотность, кг/м3 Ширина, см Длина, м Площадь, Коэффициент теплопроводности, Вт/(м • °С)
А (односто­ 3     30 36  
ронний) 4     30 36  
  5 44 120 30 36 0,037
  8     15 18  
  10     15 18  
В(двусто- ' 3     30 36  
ронний) 4     30 36  
  5 54 120 30 36 0,032
  8     15 18  
  10     15 18  
Тип Толщина, мм Плотность, кг/м3 Ширина, см Длина, м Площадь, м2 Коэффициент теплопроводности, Вт/(м • °С)

С (односто­ронний, самоклейка)

3

74

58

30 17,4

0,038

4 30 17,4
5 30 17,4
8 15 8,7
10 15 8,7

 

Неорганические теплоизоляционные

Теплоизоляционные материалы и изделия из неорганического сырья изготовляют из горных пород, шлаков, стекла и асбеста.

Минеральная вата — теплоизоляционный материал, получаемый из расплава горных пород и металлургических шлаков. Она состо­ит из тонких и гибких стекловидных волокон. Минеральную вату, получаемую из расплава горных пород, называют горной, а из рас­плава шлаков — шлаковатой. Процесс производства минеральной ваты состоит из двух основных операций: расплавления сырьевой смеси и превращения расплава в волокна.

Вследствие высокой пористости минеральной ваты, содержащей до 95% объема воздушных пустот, она имеет хорошие теплоизоля­ционные свойства. Длина волокон минеральной ваты в зависимос­ти от способа производства 2—60 мм. Вата должна содержать не менее 80—90 % тонкого волокна диаметром менее 7 мкм, более тол­стые волокна диаметром до 60 мкм допускаются в пределах 10—20%.

Минеральную вату выпускают четырех марок: 75,100,125 и 150 (табл. 5.5).

Таблица 5.5Технические характеристики минеральной ваты

Показатель

Марка

 
75 100 125

150

Объемная масса под действием удельной нагрузки в 0,02 кгс/см2, кг/м3, не более 75 100 125

150

Коэффициент теплопроводности, Вт/(м • °С), не более, при tcр, °С: 25 100 300 0,036 0,05 0,092 0,038 0,05 0,088 0,04 0,052 0,09

0,042 0,054 0,094

Средний диаметр волокон, мкм, не более . 6 8 8

8

           

 

Содержание серы в минеральной вате не должно превышать 1 %, влажность — не более 2%.

Помимо простоты производства и невысокой стоимости мине­ральная вата обладает рядом положительных качеств: она не горит, малогигроскопична и достаточно морозостойка; ее можно приме­нять в качестве теплоизоляционного материала при температуре изолируемой поверхности до 600 °С.

Из-за хрупкости и склонности минеральной ваты к пылеобразованию ее россыпью, как правило, не применяют.

Ниже рассмотрены теплоизоляционные изделия из минеральной ваты, получившие наиболее широкое распространение.

Плиты минераловатные на битумной связке. Этот вид изделий представляет собой теплоизоляционный материал, получаемый в результате обработки волокон ваты битумом. В зависимости от уп­лотнения под удельной нагрузкой 2 кПа/см2 плиты разделяют на мягкие (войлок) и полужесткие. В соответствии с ГОСТ-10140—80 мягкие плиты выпускают длиной 1000, 1500 и 2000, шириной 450, 500 и 1000 и толщиной 50,60,70,80,90 и 100 мм. Полужесткие плиты имеют длину 500 и 1000, ширину 450 и 590 и толщину 50, 60, 70, 80, 90 и 100 мм.

Мягкие и полужесткие минераловатные плиты на битумной связке применяют для теплоизоляции в ограждающих конструкциях зданий, для теплоизоляции промышленных установок, трубопро­водов и оборудования при температуре изолируемых поверхностей не выше 60 °С и для теплоизоляции ограждающих конструкций.

Плиты минераловатные на синтетическом связующем. Примене­ние синтетического связующего, как правило, повышает стоимость минераловатных плит, однако они получают новые положительные качества. Важно то, что материал становится пригодным для теп­лоизоляции поверхностей строительных конструкций и промыш­ленного оборудования с рабочей температурой от —60 до +400 °С. Производственные процессы изготовления плит на синтетическом связующем и на битумной связке во многом аналогичны.

Теплоизоляционные минераловатные плиты выпускаются квад­ратной и прямоугольной формы размером 1000 х 500 мм, толщиной 50, 75 и 100 мм, а также в форме матов в виде рулонов различных размеров.

Кроме плит разных видов и назначения из минеральной ваты изготовляют и другие теплоизоляционные изделия — скорлупы, сегменты, понуры и др.

Стеклянная вата и изделия из нее. Стеклянная вата представляет собой волокнистый материал, состоящий из тонких и гибких стеклянных нитей, получаемых из расплавленной стекломассы. Для из­готовления ваты используют стеклянный бой или сырье, применяе­мое для производства стекла: кварцевый песок, известняк, кальци­нированную соду и сульфат натрия. Стеклянная вата имеет более длинные волокна, чем минеральная, и отличается от нее большей химической стойкостью. Теплопроводность ее не выше 0,052 Вт/(м • °С) при температуре 25 "С, т.е. практически такая же, как и минераль­ной ваты. Стеклянная вата не горит и не тлеет, не гниет независимо от условий эксплуатации. Структура ваты должна быть рыхлой: ко­личество прядей, состоящих из параллельных, плотно расположен­ных волокон, — не более 20% по массе. Плотность ее в рыхлом со­стоянии не должна быть более 130 кг/м3.

Для теплоизоляции стеклянную вату применяют в виде матов, полос, плит, скорлуп и других изделий.

Рис. 5.2. Мат из стекловаты со сквозной простежкой


Маты из стеклянной ваты (рис. 5.2). Маты изготовляют путем прошивки стеклянной ваты, покрытой сверху и снизу слоем про­клеенных стеклянных волокон толщиной 1,5 мм. Этот слой скреп­ляет волокна изделия и предохраняет его от повреждений при транс­портировании и монтажных работах. Маты выпускают в виде ши­роких пластин прямоугольной формы длиной 1000—3000, шириной 200-750 и толщиной 10,15, 20,30 и 50 мм и в виде узких полос пря­моугольной формы длиной 500-6000 (с интервалами через 500 мм), шириной 30-250 и толщиной 10—30 мм. Плотность матов достига­ет 170 кг/м3.

 

Маты изготовляют путем наложения друг на друга и скрепления прошивкой тонких слоев стеклянных волокон, пересекающихся под различными углами. Поверхностный слой из стеклоткани, покры­вающий изделие сверху и снизу, должен быть проклеен 2—5%-ным раствором декстрина (клея).

Прошивают маты в продольном направлении асбестовыми или кручеными из стеклянного волокна нитями (рис. 5.3).

Маты используют для теплоизоляции плоских и цилиндричес­ких поверхностей с большим радиусом кривизны.

Технические характеристики теплоизоляционных изделий пред­ставлены в табл. 5.6.

Таблица 5.6

Наименование, размеры в мм Марка Плотность, кг/м3 Коэффициент теплопроводности, Вт/(м • °С) Температура применения, °С
Маты из стеклянного волокна:        
6000 х 1500 х 60, 50, 40 М25 21-29 0,044 От -60 до + 300
6000 х 1500 х 60, 50, 40 М35 30-41 0,044 От -60 до + 300
Плиты из стеклянного волокна:        
1000 х 500 х 50, 75, 100 1000 x 500x50, 100 1000 х 500x50, 75, 100 1000 x 500x50, 100 1000 x 500 x50,100 П-75 П-60 П-45 П-30 П-20 66-84 51-66 36-50 27-38 18-26 0,041 0,042 0,042 0,044 0,044 От -60 до + 400 От -60 до + 375 От -60 до + 350 От -60 до + 300 От -60 до + 300
Холсты из супертонких базальтовых волокон БСТВ До 23 0,032 От -65 до + 300

 

 

Рис. 5.3. Последовательность простежки мата: 1 — петля простежки; 2 — игла; 3 — слой проклеенных волокон;

4 — перфорированная плоскость простежного стола


 

Плиты поставляют упакованными в термоусадочную или поли­этиленовую пленку, а также, по согласованию с заказчиком, упа­ковку плит производят поштучно.

Теплоизоляционные материалы на основе базальтового волокна (БТШ, ATM-IO, БЗМ). Базальтовое волокно образуется при вагра­ночной плавке из шихт, содержащих горные породы, — в основном базальт или диабаз.

Базальтовая вата отличается от других видов минеральной ваты малым диаметром волокон и их эластичностью, а также сравнитель­но высокой температуростойкостью. Базальтовая вата инертна к воздействию воды и слабых кислот, что обусловливает ее долговеч­ность.

Шнуры теплоизоляционные базальтовые предназначены для теп­ловой изоляции поверхностей трубопроводов с температурой от —260 до +700 "С. Они состоят из сердцевины, изготовленной из су­пертонкого базальтового волокна, и оплетки сердцевины — базаль­тового жгута.

Шнуры в зависимости от диаметра маркируются от БТШ-6 до БТШ-40, где цифры обозначают диаметр шнура в мм. Коэффици­ент теплопроводности при средней температуре 5 ~ 25 °С не более 0,047 Вт/(м • °С).

Базальтовые шнуры поставляются в бухтах массой до 30 кг, упа­кованных в полиэтиленовую пленку или упаковочную бумагу и уло­женных в фанерные ящики. Шнуры хранятся в закрытых сухих помещениях и предохраняются от увлажнения и загрязнения. Ма­териал нетоксичен и негорюч.

Холсты из супертонких базальтовых волокон представляют собой слой перепутанных штапельных волокон, скрепленных между со­бой силами естественного сцепления. Плотность холстов до 23 кг/м3, коэффициент теплопроводности не более 0,032 Вт/(м • °С).

Холсты предназначены для изготовления высокоэффективных тепло-, звукоизоляционных и звукопоглощающих материалов; в строительных конструкциях — в качестве высокотемпературной изоляции в энергетическом и промышленном оборудовании печей; в жилищном, гражданском строительстве — в конструкциях легких многослойных перегородок и стен, в качестве звукоизоляционных слоев междуэтажных перекрытий, в конструкциях легких подвес­ных потолков для улучшения изоляции от ударного шума; в конст­рукциях глушителей шума установок вентиляции и кондициониро­вания воздуха; в качестве фильтров для очистки газовоздушных и жидких сред, а также других изделий со специфическими свойства­ми, обусловленными тонковолокнистой структурой.

Упаковка изделий производится в полиэтиленовую пленку.

Маты прошивные из минеральной ваты ВФ- 75 изготовляют про­шивкой хлопчатобумажной нитью с обкладкой с одной стороны металлической сеткой. Эти маты применяют для теплоизоляции промышленного оборудования и трубопроводов с температурой изолируемой поверхности до 600 °С.

Техническая характеристика матов прошивных из минеральной ваты ВФ-75: объемная масса не более 100 кг/м3; коэффициент теп­лопроводности при температуре 0 °С — 0,032 Вт/(м • °С), а при 100 °С — 0,049 Вт/(м • °С); влажность не более 1%. Размеры, мм: длина 3000 и 5000, ширина 500 и 1000; толщина (под нагрузкой 0,017 кгс/см2) 50—100 с интервалом 10 мм.

Асбестсодержащие теплоизоляционные материалы обычно содер­жат хризолитовый асбест, обладающий высокой температуростой- костью. Включение хризолитового асбеста в теплоизоляционные изделия понижает их теплопроводность и повышает прочность. Эти изделия выдерживают высокие температуры при эксплуатации.

Асбестовая бумага — листовой или рулонный материал, изготов­ленный из асбеста с небольшой добавкой склеивающих веществ (обычно крахмала до 5 % массы асбеста). Асбест подвергают мокрой распушке, а затем из приготовленной массы изготовляют листы на листоформовочной машине. В зависимости от степени распушки асбеста и уплотнения массы на листоформовочной машине объем­ная масса асбестовой бумаги составляет 450-500 кг/м3, теплопро­водность ее 0,12-0,174 Вт/(м • °С) при 0 °С и 0,14-0,198 Вт/(м • "С) при 100 "С.

При нагревании свыше 200 °С объемная масса и прочность ас­бестовой бумаги вследствие выгорания органических склеивающих веществ уменьшаются, а при температуре свыше 500 °С асбестовые волокна разрушаются вследствие дегидратации асбеста (удаления кристаллизационной воды). Масса 1 м2 асбестовой бумагиО,65—1,9 кг, влажность не выше 3%. Размеры листовой бумаги: длина 1000 и ширина 950 мм с допуском ~ 10 мм, толщина 0,3—1,5 мм. Jim. полу­чения гофрированной бумаги гладкую бумагу пропускают между двумя обогреваемыми рифлеными барабанами. Гофрированная бумага служит для изготовления асбестового картона.

Асбестовый картон изготовляют из асбестовой бумаги или асбе­стового волокна, смешанного с наполнителем — каолином и связу­ющим веществом — крахмалом. Ячеистый асбестовый картон состо­ит из чередующихся слоев гладкой и гофрированной бумаги, скле­енных между собой жидким стеклом или клеем. Размер его листов 1000 х 1000 мм при толщине 5—50 мм. В зависимости от толщины бумаги и размеров воздушных прослоек его объемная масса состав­ляет 250—600 кг/м3, теплопроводность 0,052-0,093 Вт/(м • °С) при 50 °С.

Картон из асбестового волокна и наполнителя изготовляют на листоформовочных машинах. Размер листов картона 1000 х 1000 мм, толщина 2—12 мм, объемная масса 900—1000 кг/м3, теплопровод­ность 0,157 Вт/(м • °С) при 0 °С и 0,182 Вт/(м • °С) при 100 °С.

Асбестовый картон в виде плит применяют для теплоизоляции плоских поверхностей, а в виде цилиндрических и полуцилиндри­ческих скорлуп — для изоляции трубопроводов.

Асбестокремнеземистые порошкообразные смеси состоят в основ­ном из распушенного асбеста и кремнеземистых горных пород.

Наиболее распространенный из этих материалов — асбозурит — смесь асбеста 6-го и 7-го сортов (не менее 15%) с трепелом или ди­атомитом. Применяется путем нанесения нескольких слоев масти­ки (после затворения водой) для изоляции горячих поверхностей (до 600 °С). Теплопроводность асбозурита в пределах 0,186-0,256 Вт/ (м • °С), объемная масса 150-850 кг/м3.

Асбозурит, смешанный с небольшим количеством воды, приме­няют в виде мастики для отделки поверхности изоляции, а также в качестве мастичной теплоизоляции поверхностей трубопроводов и промышленного оборудования при температуре до 900 °С.

В зависимости от объемной массы отформованных образцов ас­бозурит разделяется натри марки: 600, 700 и 800 (табл. 5.7).

Таблица 5.7Техническая характеристика асбозурита

Показатель

Марка

600 700 800
Плотность, кг/м3 600 700 700
Коэффициент теплопроводности, Вт/(м • °С) при температуре 25 °С 0,18 0,2 0,22

 

Асбозурит перевозят навалом и хранят в условиях, исключающих загрязнение и увлажнение.

Асбестомагнезиальныематериалы — смесь асбеста с солями маг­ния и кальция. Наибольшее применение имеет совелит. Он состо­ит из порошкообразной смеси распушенного асбеста (20%) и доло­мита (80%).

Совелитовую смесь, смешанную с небольшим количеством воды, в виде мастики наносят на теплоизолируемые поверхности. Из со- велита изготовляют плиты шириной 170,250,500, длиной 500, тол­щиной 40-75 мм; полуцилиндры и сегменты длиной 500, толщи­ной 40—80 и внутренним диаметром 57—426 мм. Объемная масса совелитовых изделий в сухом состоянии не более 400 кг/м3, тепло­проводность не более 0,08 Вт/(м • °С). На теплоизолируемые поверх­ности совелитовые изделия монтируют насухо или на мастике со смещением поперечных швов и крепят бандажными кольцами из оцинкованной проволоки. Поверхность совелитовой теплоизоляции должна быть обязательно защищена покровным слоем, например алюминиевой фольгой (рис. 5.4).


Пеностекло представляет собой вспененную стекольную массу с замкнутыми порами. Сырьем для его изготовления служит смесь тонкоизмельченного стекла и газонаполнителя (молотый извест­няк). Эту смесь засыпают в соответствующие формы и нагревают в печах до 900 °С, при этом происходит вспенивание расплавленной стекломассы за счет разложения газообразователя.

При охлаждении вспененная стекломасса превращается в проч­ный материал ячеистой структуры (объемная масса 200—600 кг/м3) с низкой теплопроводностью (0,09-0,14 Вт/м • °С) и пределом проч­ности 2—6 МПа.

Пеностекло в виде изделий (плиты, полуцилиндры, сегменты, скорлупы) используется для теплоизоляции теплопроводов, тепло­вых агрегатов, где температура поверхности не превышает 300-400 °С, а также для утепления ограждающих конструкций зданий и камер холодильников.

Вспученный перлит — сыпучий теплоизоляционный материал. Его изготовляют путем обжига (1000 °С) породы вулканического происхождения — перлита стекловидной структуры. При обжиге он многократно увеличивается в объеме. Перлит вспученный — пори­стый зерновидный материал белого цвета плотностью (насыпной) 250—600 кг/м3 для мелкокусковых фракций (5-20 мм) и 100-500 кг/м3 для зерновидных фракций (не менее 5 мм), теплопроводностью 0,076-0,093 и 0,047-0,09 Вт/(м • °С).

Вспученный перлит в виде мелкокусковых фракций (щебень) и зерновидных фракций (песок) используют в качестве заполнителя при изготовлении теплоизоляционных изделий. Обычно связующи­ми материалами служат органические материалы (синтетические смолы, нефтяной битум) и неорганические (жидкое стекло, порт­ландцемент).

Изделия из вспученного перлита (полуцилиндры, сегменты, плиты) применяют с учетом свойств связующих материалов. Изде­лия на органических связующих используют в качестве утеплителя холодильников и строительных конструкций, а неорганических — для тепловой изоляции трубопроводов, котлов и др.

Вспученный вермикулит. Вспученным вермикулитом называют сыпучий теплоизоляционный материал, получаемый путем измель­чения и кратковременного обжига в течение 3—5 мин природного вермикулита. Вермикулит — сложный алюмосиликат магния (про­дукт изменения слюд, преимущественно биотита).

В процессе обжига при 800—1000 °С вермикулит вспучивается, увеличиваясь в объеме в 20 раз и более. Вспученный вермикулит обладает высокой пористостью, малой объемной массой, низкой теплопроводностью и значительной температуроустойчивостью.

Насыпная объемная масса его зависит от условий обжига и разме­ров зерен.

В зависимости от размеров зерен вермикулит делят натри фрак­ции: крупную — 5—10, среднюю — 0,6—5 и мелкую — до 0,6 мм. В крупном и среднем вермикулите допускается наличие не более 15% по массе зерен большего или меньшего размера. С учетом объем­ной массы вермикулит вырабатывают трех марок — 100,150 и 200. По требованию заказчика предприятия могут выпускать более тя­желый вермикулит марок 250 и 300.

Обжигают вермикулит в шахтных или вращающихся печах. Наи­более эффективный способ вспучивания вермикулита — обжиг его во взвешенном состоянии. Вспученный вермикулит сортируют на фракции по крупности зерен и по объемной массе и упаковывают в плотные бумажные четырехслойные мешки. Хранят вермикулит в крытых помещениях в условиях, не допускающих его увлажнения, распыления, загрязнения и уплотнения.

Вспученный вермикулит — эффективный теплоизоляционный материал. Применяют его для засыпки при температуре изолиру­емых поверхностей от 260 до 1100 °С. Используют вермикулит и для изготовления теплоизоляционных изделий — при добавке вяжущих веществ из него формуют плиты, скорлупы и сегменты. Темпера- туростойкость изделий из вспученного вермикулита зависит от при­меняемого вяжущего вещества. Изделия на основе портландцемента имеют температуростойкость до 1000 °С, на основе глины с добав­кой крахмала — до 900 °С и на основе полимерных связующих — не выше 200 °С. Вспученный вермикулит применяют также в качестве заполнителя для легких бетонов и приготовления штукатурных теп­лоизоляционных растворов.

Ячеистый бетон представляет собой искусственный камневидный материал с равномерно распределенными в нем порами диа­метром не более 1—2 мм.

Сырьем для получения ячеистого бетона являются портландце­мент, известь, песок, порообразователи и вода. Предварительно вспученная смесь минерального вяжущего, тонкодисперсного крем­неземистого компонента, порообразователя и воды помещается в автоклав, где происходит быстрое ее твердение. Твердение может происходить и в обычных условиях (на воздухе).

В объеме ячеистого бетона до 85% равномерно распределенных пор, разделенных тонкими и прочными перегородками из искус­ственного камня.

В зависимости от вида вяжущего материала различают ячеистые бетоны на портландцементе, на воздушной извести, на шлаковых вяжущих с активизаторами твердения и на гипсовых вяжущих.

По назначению ячеистый бетон разделяют на следующие виды: теплоизоляционный, плотностью 500 кг/м3, используемый для из­готовления теплоизоляционных плит, скорлуп и конструкций плот­ностью 500—900 кг/м3 для ограждающих конструкций зданий.

Теплоизоляционные изделия в виде плит из ячеистого бетона выпускают длиной 2000, шириной 500 и толщиной 80-200 см с гра­дацией через 20 см.

Теплопроводность этих плит должна быть в пределах 0,11— 0,13 Вт/(м • °С), влажность — не более 15%.

Плиты из ячеистого бетона применяют для теплоизоляции стро­ительных конструкций и поверхностей промышленного оборудо­вания при температуре изолируемых поверхностей до 400°С. В кон­струкциях, которые при эксплуатации подвергаются увлажнению, плиты надо надежно защищать от воздействия влаги, а при нали­чии агрессивной среды — и от ее воздействия.

Кроме указанных плит из ячеистого бетона вырабатывают и дру­гие виды теплоизоляционных изделий, прочностные свойства ко­торых можно повысить армированием.






Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: