Расчет индуктивности и выбор сглаживающего дросселя

Величина индуктивности дросселя зависит от его назначения, силовой схемы преобразователя, расположения дросселей в схеме.

Сглаживающий дроссель (СД) включается последовательно с якорем двигателя, и его индуктивность выбирается из следующих условий.

а) сглаживание пульсаций выпрямительного тока до требуемой величины обеспечивающей удовлетворительную коммутацию двигателя;

б) обеспечение непрерывного выпрямленного токапри минимальной нагрузке на валу двигателя (исключая реверсивные преобразования с совместным управлением).

Индуктивность сглаживающего дросселя находится по уравнению:

 

Где Lкр – критическая индуктивность, обеспечивающая выполнение вышеперечисленных условий, Гн;

Lя – индуктивность якоря двигателя, Гн.

 

β – эпирический коэффициент, для компенсированных машин β=0,1- 0,25, для некомпенсированных β=0,6;

β=0,6;

р – число пар полюсов;

Uн, In, ωн  - номинальное значение напряжений, тока, частоты вращения двигателя;

 

nн – номинальная скорость вращения, об/мин

 

LФ – индуктивность питающей фазы трансформатора или сетевого реактора с учетом индуктивности питающей сети.

Критическая индуктивность обеспечивающаявыполнение первого условия находится по уравнению;

 

 

Где Еdm – амплитуда основной гармонической выпрямительной ЭДС.

 

 - амплитуда основной гармонической ЭДС в функции угла α, для реверсивных электроприводов Еdm обычно определяется при α=90°(наибольшее амплитудное значение);

 

 

m – число фаз, m=6

ab – коэффициент схемы; ab=2.

 - допустимое действующее значение основной гармоники переменной состовляющей выпрямленного тока, обычно 2-15%, меньшее значение  берется для двигателей большой мощности, для которыхусловия коммутации обычно напряженные, для двигателей малой и средней мощности целесообразно увеличить до 8-15%, так как токое увеличение,не сказываясь существенно на коммутации двигателя, снижает габариты сглаживающего дросселя. =12%

 

Для ликвидации режима прерывистого тока на холостом ходу двигателя Iяхх необходимо обеспечить превышение тока холостого хода двигателя над граничное-непрерывным значением тока Iсгр преобразователя.

Критическая индуктивность, обеспечивающая выполнение второго условия, находится по уравнению:

 

 

Где α – угол регулирования, при котором двигатель работает стоком Iяхх и заданной скоростью ωзад;

КФ – постоянная двигателя при Ф=ФН=const? Bc;

Rя800с – сопротивление якорной цепи двигателя с учетом компенсационной обмотки и добавочных полюсов;

Iяхх- ток холостого хода двигателя можно определить:

η – КПД машины.

ωзад – минимальная по заданию частота вращения вала машины.

Rэ – эквивалентное активное сопротивление преобразователя,

Rэ=Xdсхπ/Р)=0.03297(2*3.14/4)=0.021 Ом

Где Xd – приведенное по вторичной цепи индуктивное сопротивление фазы трансформатора.

Xd = ωсLфсх=314*0.00021/2=0.03297 Ом

ωс – угловая частота питающей сети.

Ксх = ab=2

Lтр – индуктивность трансформатора, приведенная к цепи выпрямленного тока.

α=79.350

 

 

Из двух значений критической индуктивности выбираем большее; выбираем Lкр2=0.001422098 Гн и подставляем в уравнение:

Lcd=LKPLя-abLф=0.001422098-0.00171-2 0.00021=-0.00070 Гн

Так как значение Lcd получилось отрицательное, следовательно дросселя не существует, т.к. Lcd отрицательное. То данная схема уже обеспечивает сглаживающую пульсацию тока.

 

 

1.6.Расчет и выбор элементов защиты тиристорного преобразователя от токов короткого замыкания и перенапряжений

 

 

Большенство промышленных ТП снабжено быстродействующей защитой, которая при коротком замыкании блокирует или сдвигает к границе инверторного режима управляющие импульсы до включения очередного по порядку включения тиристора. Поэтому при внешних и внутренних к.з. в этих ТП аварийные токи протекают по двум плечам трехфазной мостовой схемы и двум фазам вторичной обмотки трансформатора, т.е. имеет место двухфазное к.з. трансформатора.

Амплитуда и продолжительность протекания аварийного тока при отпирание тиристоров в передающей группе РТП с раздельным управлением и при нарушении соотношения α12≥1800 в РТП с совместным управлением не превосходят их значений при внешнем к.з.

При внешних к.з. расчет токов ведется в предположении, что угол регулирования ТП α =0, при этом токи к.з. максимальны.

Для нахождения ударного тока глухого внешнего к.з. (к.з. на зажимах ТП до СД) вначале находится амплитуда базового тока к.з.:

Где U2мф – амплитуда фазного напряжения вторичной обмотки трансформатора при х.х.;

Х2n V2n – приведенные к вторичной стороне реактивные и активные сопротивления одной фазы трансформатора.

Находим ударный ток глухого внешнего к.з.

Iуд=Iк.м * Iуд*

Iуд* находят по графику в зависимости от ctg φк

Iуд*=1,25А

Iуд=1100*1,25=1375А

Интеграл предельной нагрузки при глухом внешнем к.з. определяется по формуле:

I2t=I2км(I*2t)

В которой I*2t определяется в зависимости от ctg φк

I2t=11002*10*10-3=12100=12.1кА

Где WB – максимально допустимое значение интеграла квадрата аварийного тока, исчесляемое, при длительности импульса 10мс в заданной температуре структуры 0С

Wпр – интеграл плавления плавкой вставки, определяющий количество энергии, необходимое для расплавления плавкой вставки.

 

nд =1.2 – коэффициент запаса.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: