Рішення рівнянь із параметрами, зв'язаних із властивостями показовою, тригонометричною й логарифмічною функціями

 

1. Знайдемо значення параметра n, при яких рівняння 15·10 х – 20 = n – n · 10х + 1 не має коренів?

Рішення: перетворимо задане рівняння: 15·10 х – 20 = n – n · 10х + 1; 15·10 х + n· 10х + 1 = n + 20; 10 х ·(15 + 10n) = n + 20; 10 х = .

Рівняння не буде мати рішень при  ≤ 0, оскільки 10 х завжди позитивно.

Вирішуючи зазначену нерівність методом інтервалів, маємо:  ≤ 0; (n + 20)·(15 + 10n) ≤ 0; - 20 ≤ n ≤ - 1,5.

Відповідь: .

2. Знайдемо всі значення параметра а, при яких рівняння lg2 (1 + х2) + (3а – 2)· lg(1 + х2) + а2 = 0 не має рішень.

Рішення: позначимо lg(1 + х2) = z, z > 0, тоді вихідне рівняння прийме вид: z2 + (3а – 2) · z + а2 = 0 Це рівняння – квадратне з дискримінантом, рівним (3а – 2)2 – 4а2 = 5а2 – 12а + 4. При дискримінанті менше 0, тобто при 5а2 – 12а + 4 < 0 виконується при 0,4 < а <2.

Відповідь: (0,4; 2).

3. Знайдемо найбільше ціле значення параметра а, при якому рівняння cos2x + asinx = 2 a – 7 має рішення.

Рішення: перетворимо задане рівняння:

cos2x + a sinx = 2 a – 7; 1 – 2sin2х – asinx = 2 a – 7; sin2х - a sinx + a – 4 = 0;

 

(sinх – 2) ·  = 0.


Рішення рівняння (sinх – 2) ·  = 0 дає:

(sinх - 2) = 0; х належить порожній множині.

sinх -  = 0; х = (-1)n arcsin  + πn, n  Z при  ≤ 1. Нерівність ≤ 1 має рішення 2 ≤ а ≤ 6, звідки треба, що найбільше ціле значення параметра а дорівнює 6.

Відповідь: 6.

4. Указати найбільше ціле значення параметра а, при якому корінь рівняння 4х2 - 2х + а = 0 належить інтервалу (- 1; 1).

Рішення: корінь заданого рівняння рівні: х1 =  (1+ )

 

х2 = , при цьому а.

За умовою -1 < (1+ ) < 1 < < 3,

- 1 < < 1  >  > - 3.

 

Рішенням, що задовольняють зазначеним подвійним нерівностям, буде рішення подвійної нерівності: - 3 <  < 3.

Нерівність - 3 <  виконується при всіх а ≤ , нерівність < 3 – при - 2 < а. Таким чином, припустимі значення параметра а лежать в інтервалі (-2; .

Найбільше ціле значення параметра а із цього інтервалу, що одночасно належить і інтервалу (-1; 1), дорівнює 0.

Відповідь: 0.

5. При яких значеннях параметра а число корінь рівняння

2 -  х  = 0 дорівнює а?

Рішення: побудуємо ескіз графіка функції, в = 2 -  х  при цьому врахуємо, що функція в – парна і її графік – симетричний щодо осі ординат, у силу чого можна обмежитися побудовою тільки його правої частини (х ≥ 0). Також урахуємо, що тричлен х2 - 8х + 7 має коріння х = 1 і х = 7, при х = 0 в = 7, а при х = 4 – мінімум, рівний – 9. На малюнку: пунктирними прямими зображена парабола

в = х2 - 8х + 7 з мінімумом умін рівним - 9 при х хв = 4, і коріннями х1 = 1 і х2 = 7;

 

 

 

суцільними лініями зображена частина параболи в = 2 – 8х +  (1 < х < 7), отримана дзеркальним відбиттям щодо осі 0х частини параболи

х2 - 8х + 7 при 1 < х < 7.

(Ескіз лівої частини графіка функції при х < 0 можна одержати, відбивши ескіз правої частини графіка симетрично щодо осі 0у).

Проводячи горизонталі в = а, а  N, одержуємо k крапок її перетинання з лініями ескізу графіка. Маємо:

 

а 0 [1; 6] 7 8 9
к 4 8 7 6 4 2

Таким чином, а = k при а = 7.

Відповідь: 7.

6. Указати значення параметра а, при якому рівняння

 

х4 + (1 – 2а)х2 + а2 – 4 = 0 має три різних корені.

Рішення: усяке біквадратне рівняння в загальному випадку має дві пари корінь, причому корінь однієї пари різняться тільки знаком. Три корені можливі у випадку, якщо рівняння має одну пару у вигляді нуля.

Корінь заданого рівняння рівні:

 

х =  

 

Одна з пар корінь буде дорівнює 0, якщо (2а-1) =  . Вирішуючи це рівняння за умови 2а-1 > 0 > , маємо: (2а – 1) = (2а – 1)2 = 17 – 4а

2 – 4а +1 = 17 – 4а а = 2.

Відповідь: 2.

Указати ціле значення параметра p, при якому рівняння

cosx – 2sinx =  +  має рішення.

Рішення: р ≥ 0; 2 – р ≥ 0   р ≤ 2; поєднуючи припустимі значення параметра р, маємо:

 

0 ≤ р ≤ 2.

 

При р = 0 вихідне рівняння приймає вид – 2sinх = 2 х належить порожній множині (у силу обмеженості синуса).

При р = 1 вихідне рівняння приймає вид:


cosx-2sinx =  +1.

 

Максимальне значення різниці (cosx-2sinx) становить

 = (- sinx – 2cosx) = 0 tgx = -2, при цьому sinx =

 

sin (arctg(-2)) = , cosx – 2sinx = , що менше  +1.

 

Отже, при р = 1 рівняння рішень не має.

При р = 2 вихідне рівняння приймає вид

 

.

 

Максимальне значення різниці  становить  при х = arctg(-  ) (при цьому sinx =  , cosx = ). Оскільки >  +1, то рівняння  =  буде мати рішення.

Відповідь: 2.

8. Визначити число натуральних n, при яких рівняння  не має рішення.

Рішення: х ≠ 0, n? 10.

 

 

Рівняння х2 – 8х – n(n – 10) = 0 не має рішення, якщо його дискримінант менше 0, тобто 16 + n(n-10) < 0  n2 -10n +16 < 0 (n-2) (n-8) <0  2 < n < 8.

У знайденому інтервалі 5 натуральних чисел: 3, 4, 5, 6 і 7. З огляду на умову n? 10, знаходимо, що загальне число натуральних n, при яких рівняння не має рішень, дорівнює 6.

Відповідь: 6.

9. Знайти найменше ціле значення параметра а, при якому рівняння

 

(0 < х < ) має рішення.

Рішення: за умовою 1 > sinx > 0 1 < < + ,

 

1 > cosx > 0  1 < < + ,

 

Отже, 2 < а < + .

Зводячи обидві частини заданого рівняння у квадрат, маємо:

 

 = а2  = а2

 = а2.

 

Уведемо змінну z = . Тоді вихідне рівняння прийме вид:

z2 + 2z – а2 = 0. Воно має рішення при будь-якому а, оскільки його дискримінант

D = 1 + а2позитивний при будь-якому а.

З огляду на, що 2 < а < + , містимо, що найменше ціле значення параметра а, при якому задане рівняння має рішення дорівнює 3.

Відповідь: 3.






Висновок

 

Під час створення даного проекту ми вдосконалили свої старі знання по темі «Рівняння з параметрами, зв'язаних із властивостями показовою, логарифмічною й тригонометричною функціями» і якоюсь мірою одержали нові.

По завершенню роботи ми прийшли до висновку, що ця тема повинна вивчатися не тільки на елективних курсах і додаткових заняттях, але й у шкільній програмі, тому що вона формує логічне мислення й математичну культуру в школярів. Учням (студентам) знання по цій темі допоможуть здати незалежне оцінювання знань.



Література

 

1. П.І.Горнштейн, В.Б.Полонский, М.С.Якир Задачі з параметрами. – К., 2002.

2. Н.Ю.Глаголєва Задачі по математиці для вступників у вузи. – К., 1994р.

3. В.В.Лікоть Задачі з параметрами, - К., 2003р.

4. В.В.Ткачук Математика – абітурієнтові. – К., 1994р.

5. Г.А.Ястребинецький Рівняння й нерівності, що містять параметри. – К., 2004

6. А.Г.Мордкович Алгебра й початок аналізу. – К., 1997р.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: