Расчет второстепенной балки

 

Вычисляем расчетный пролет для крайнего пролета балки, который равен расстоянию от оси опоры на стене до грани главной балки. .

Определим расчетную нагрузку на 1 м второстепенной балки, собираемую с грузовой полосы шириной, равной максимальному расстоянию между осями второстепенных балок.

Постоянная нагрузка:

от собственного веса плиты и пола 3,52х1,6=5,632 кН/м;

от веса ребра балки 0,2(0,4-0,08)х25х1,1=1,76кН/м;

Итого: g=7,392 кН/м.

Временная нагрузка: v=12 х1,6=19,2 кН/м.

Итого с учетом коэффициентом надежности по назначению здания q=(g+v)x =(7,392+19,2)х1=26,592 кН/м.

Изгибающий момент с учетом перераспределения усилий в статически неопределимой системе будут равны:

в первом пролете

на первой промежуточной опоре

Максимальная поперечная сила (на первой промежуточной опоре слева) равна . A-III (Rs=365 МПа).

По формуле 3.19 [1] проверим правильность предварительного назначения высоты сечения второстепенной балки:

, или

h0+a=286+35=321 мм<400мм.

Выполним расчет прочности сечений, нормальных к продольной оси балки, на действие изгибающих моментов.

Сечение в пролете М=79,233 кНхм. Определим расчетную ширину полки таврового сечения согласно п. 3.16 [2]: при и (расстояние между осями второстепенных балок) принимаем . Вычислим h0=h-a=400-30=370мм.

Так как

, то граница сжатой зоны проходит в полке, и расчет производим как для прямоугольного сечения шириной Вычислим , тогда требуемая по расчету площадь продольной рабочей арматуры будет равна:

. Принимаем 2 20 А-III (As=628мм2).

Сечение на опоре В, М=61,712 кНхм. Вычислим h0=h-a=400-35=365мм;

т.е. сжатая арматура не требуется . Принимаем 5 12 А-III, As=565мм2.

Выполним расчет прочности наиболее опасного сечения балки на действие поперечной силы на опоры В слева.Из условия сварки принимаем поперечные стержни диаметром 5 Вр-I (Rsw=260 МПа, Es=170000 МПа), число каркасов – два (Asw=19,6х2=39,2 мм2). Назначаем максимально допустимый шаг поперечных стержней s=150 мм согласно требованиям п. 5.27 [2].

Поперечная сила на опоре Qmax=91,343 кН, фактическая равномерно распределенная нагрузка q1=26,592 кН/м.

Проверим прочность наклонной полосы на сжатие по условию 72 [2]. Определяем коэффициенты и : Тогда , т.е. прочность наклонной полосы ребра балки обеспечена.

По условию 75 [2] проверим прочность наклонного сечения по поперечной силе. Определим величины Мb и qsw: ; так как , тогда ; ;

 

Определим значение , принимая : . Поскольку , значение Мb корректировать не надо.

Согласно п. 3.23 [3] определяем длину проекции опасного наклонного сечения с.

Значение с определяем по формуле . Поскольку с=1,525м> , принимаем с=1,23м.

Тогда Длина проекции наклонной трещины будет равна . Принимаем с0=0,74 м, следовательно .

Проверим условие 75 [2]: , т.е. прочность наклонного сечения по поперечной силе обеспечена.

Требование п.3.32.(2)также выполняются поскольку

 

Список литературы.

 

Байков В.Н., Сигалов Э.Е. Железобетонные конструкции. Общий курс. – М.: Стройиздат, 1985.

СНиП 2. 03.01 – 84. Бетонные и железобетонные конструкции.

Пособие по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предварительного напряжения арматуры (к СНиП 2.03.01 – 84). – М.: ЦИТП, 1986.

Пособие по проектированию предварительно напряженных железобетонных конструкций из тяжелых и легких бетонов (к СНиП 2.03.01 – 84). ЧастьI. – М.: ЦИТП,1986.

Пособие по проектированию предварительно напряженных железобетонных конструкций из тяжелых и легких бетонов (к СНиП 2.03.01 – 84). ЧастьII. – М.: ЦИТП,1986.

СНиП II-22-81. Каменные и армокаменные конструкции.

СНиП 2.01.07 – 85. Нагрузки и воздействия.

Бородачев Н.А. Автоматезированное проектирование железобетонных и каменных конструкций. – М.: Стройиздат, 1995.

 

31

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: