Классификация барионов

Доклад

на тему:

Барионы

 

 

Выполнил студент

4-го курса 431 гр

Азимов А.В.

 

Саратов 2010


 


Содержание

 

Введение

1. Классификация барионов

2. Свойства барионов

3. Протон и нейтрон

Список литературы

 


 


Введение

 

Барионы (от греч. barys — тяжёлый), группа тяжёлых элементарных частиц с полуцелым спином, состоящие из трёх кварков (предполагается, но не доказано существование барионов из 5 и большего числа кварков) и массой не меньше массы протона. Барионы вместе с мезонами (последние состоят из двух кварков) составляют группу элементарных частиц, участвующих в сильном взаимодействии и называемых адронами.

Адроны также характеризуются квантовыми числами s (странность), c (очарование), b (красота), t (истина), изоспином I и его третьей проекцией I3.

К основным барионам относятся (по мере возрастания массы): протон, нейтрон, ламбда-гиперон, сигма-гиперон, кси-гиперон, омега-гиперон. Масса омега-гиперона (3278 масс электрона), почти в 1,8 раз больше массы протона.

 



Классификация барионов

 

Наиболее стабильными барионами являются протон и нейтрон (вместе они составляют группу нуклонов). Первый из них, насколько это сегодня известно, абсолютно стабилен, второй испытывает бета-распад с временем жизни, близким к 1000 с. Более тяжёлые барионы распадаются за время от 10−23 до 10−10 с.

Нуклоны имеют кварковый состав uud (протон) и udd (нейтрон). Их спин равен 1/2, странность нулевая. Масса близка к 940 МэВ. Вместе со своими короткоживущими возбуждёнными состояниями нуклоны относятся к группе N-барионов.

Барионы, содержащие как минимум один странный кварк (но не содержащие более тяжелых кварков), называются гиперонами.

В семействе барионов, кроме нуклонов, выделяют группы Δ-, Λ-, Σ-, Ξ- и Ω-барионов.

Конец 40-х — начало 50-х гг. ознаменовались открытием большой группы частиц с необычными свойствами, получивших название «странных».Первые частицы этой группы К+- и К--мезоны, Λ-, Σ -, X- -гипероны были открыты в космических лучах, последующие открытия странных частиц были сделаны на ускорителях — установках, создающих интенсивные потоки быстрых протонов и электронов. При столкновении с веществом ускоренные протоны и электроны рождают новые Э. ч., которые и становятся предметом изучения.

Λ- Гипероны были открыты в космических лучах английскими физиками Рочестером и Батлером в 1947, однако убедительные доказательства существования Гиперонов были получены к 1951. Детальное и систематическое изучение Гиперонов стало возможным после того, как их начали получать на ускорителях заряженных частиц высокой энергии при столкновениях быстрых нуклонов, p-мезонов и К-мезонов с нуклонами атомных ядер. Открытие Гиперонов существенно расширило физические представления об элементарных частицах, поскольку были впервые открыты частицы с массой, большей нуклонной, и установлена новая важнейшая характеристика элементарных частиц — странность. Введение странности понадобилось для объяснения ряда парадоксальных (с точки зрения существовавших представлений) свойств Гиперонов Интенсивное рождение Гиперона при столкновении адронов высокой энергии с несомненностью свидетельствовало о том, что они обладают сильным взаимодействием. С другой стороны, если бы распад Гиперонов вызывался сильным взаимодействием, их время жизни должно было бы составлять по порядку величины 10-23 сек, что в 1013 раз (на 13 порядков) меньше установленного на опыте. Время жизни Гиперонов можно объяснить, если считать, что их распад происходит за счёт слабого взаимодействия, относительная интенсивность которого в этой области энергий как раз на 12—14 порядков меньше сильного (а, следовательно, время распада во столько же раз больше). Парадоксом казалось то, что частицы, обладающие сильным взаимодействием, не могут распадаться с помощью этого взаимодействия.

Согласно современной теории элементарных частиц, каждому Гиперону должна соответствовать античастица, отличающаяся от своего Гиперона знаком электрического и барионного зарядов и странности. Все антигипероны наблюдались на опыте; последним был открыт (1971) антиомега- Гиперон .

· Δ-барионы (Δ++, Δ+, Δ0, Δ), как и нуклоны, состоят из u- и d-кварков, но, в отличие от нуклонов, их спин равен 3/2. Распадаются они главным образом на нуклон и пион. Время жизни Δ-барионов близко к 10−23 с.

· Λ-барионы (Λ0) — нейтральные (но не истинно нейтральные) частицы со спином 1/2 и странностью −1 (то есть их можно называть Λ-гиперонами), состоящие из u-, d- и s-кварка. В них u- и d-кварки находятся в синглетном по изоспину состоянии (I=0). Масса 1117 МэВ. Распадаются преимущественно на протон и отрицательный пион или на нейтрон и нейтральный пион с временем жизни 2,6×10−10 с. Открыты также тяжёлые Λ-барионы (Λ+c и Λ0b), в которых странный кварк заменён очарованным (c-кварком) или красивым (b-кварком).

· Σ-барионы (Σ+, Σ0, Σ) имеют спин 1/2, странность −1. Как и Λ-барион, состоят из u-, d- и s-кварка, но триплетны по изоспину (I=1). Нейтральный Σ0-барион имеет тот же кварковый состав, что и Λ0-барион (uds), но тяжелее, в связи с этим он очень быстро распадается в Λ0 с вылетом фотона (время жизни составляет лишь 6×10−20 с, поскольку распад происходит за счёт электромагнитного взаимодействия). Σ+ (uus) и Σ (dds) распадаются за примерно 10−10 с на пион и нуклон. Следует отметить, что Σ+ и Σ не являются частицей и античастицей — это самостоятельные частицы, каждая из них (как, кстати, и Σ0) имеет свою античастицу. Массы Σ-гиперонов составляют около 1200 МэВ. Обнаружены также тяжёлые Σ-барионы, не являющиеся гиперонами (то есть содержащие вместо s-кварка более тяжёлый кварк).

· Ξ-барионы (Ξ0 и Ξ) имеют спин 1/2, странность −2. Они содержат по два странных кварка; кварковый состав uss (Ξ0) и dss (Ξ). Их масса близка к 1,3 ГэВ. Распадаются (с временем жизни около 10−10 с) на пион и Λ0-гиперон. Существуют тяжёлые Ξ-барионы, не являющиеся гиперонами (один из странных кварков заменен c- или b-кварком).

· Ω-барионы (существует лишь один тип этих частиц, Ω-гиперон) имеют спин 3/2 и странность −3, состоят из 3 странных кварков (sss). Масса частицы 1,672 ГэВ. Преимущественные моды распада — на Λ0-гиперон и отрицательный каон или на Ξ0 и отрицательный пион (время жизни около 10−10 с). Открыты некоторые тяжёлые Ω-барионы, отличающиеся заменой одного из s-кварков на тяжёлый кварк.

 

Декуплет барионов со спином 3/2

Октет барионов со спином 1/2

 

Существует также широкий спектр короткоживущих возбуждённых состояний этих барионов.

Большинство лёгких барионов в основном состоянии распадаются за счёт слабого взаимодействия, поэтому их время жизни относительно велико (исключение составляет, как было отмечено выше, Σ0-гиперон).Лёгкие барионы (гипероны, Δ-барионы и нуклоны) в зависимости от спина входят в состав одного из двух мультиплетов: декуплета со спином 3/2 (Δ-барионы, Ω-гипероны и возбуждённые состояния Σ- и Ξ-гиперонов) и октета со спином 1/2 (нуклоны, Σ-, Λ- и Ξ-гипероны).

Таблица

Барионы (B = 1, L = 0)

Частица Кварковый состав Масса,mc2(МэВ) Время жизни (сек) или ширина (МэВ) Спин-четность, изоспинJP(I) Основные моды распада
p uud 938.27 >1031 лет 1/2+(1/2)  
n ddu 939.57 887+2 1/2+(1/2) pe
uds 1116 2.6·10-10 1/2+(0) -, nπ0
+ uus 1189 0.80·10-10 1/2+(1) 0, nπ+
0 uds 1193 7.4·10-20 1/2+(1) Λγ
- dds 1197 1.5·10-10 1/2+(1) -
0 uss 1315 2.9·10-10 1/2+(1/2) Λπ0
- dss 1321 1.6·10-10 1/2+(1/2) Λπ-
- sss 1672 0.82·10-10 3/2+(0) ΛK-, Ξ0π-
1230-1234 115-125 3/2+(3/2) (n или p) + π

 

Свойства барионов

 

Барионы участвуют во всех известных элементарных взаимодействиях: сильном, электромагнитном, слабом и гравитационном (см. Элементарные частицы. Тяготение). Наличие у Барионов сильного взаимодействия приводит к тому, что они активно взаимодействуют с атомными ядрами.

В любых ядерных реакциях, при любых взаимодействиях Барионы (при энергиях ниже порога рождения антибарионов) их общее число остаётся неизменным. Так, в процессах бета-распада нейтроны и протоны в ядрах могут превращаться друг в друга (с испусканием электронов и нейтрино или их античастиц), но их суммарное число всегда сохраняется. В результате распада Бариона обязательно образуется Барион. Никогда не наблюдались процессы, в которых они переходили бы в более лёгкие частицы без испускания Барионов. Например, не наблюдается процесс распада протона на позитрон и фотон, или захват атомного электрона протоном ядра с испусканием двух фотонов, или превращение нейтрона в электрон и положительно заряженный пи-мезон, хотя все эти процессы допустимы с точки зрения законов сохранения электрического заряда, энергии, импульса и момента количества движения (существование таких процессов приводило бы к нестабильности вещества).

Подмеченные закономерности были сформулированы в виде закона сохранения числа Барионов. Этому закону можно придать форму, напоминающую закон сохранения электрического заряда, если приписать Барионам специфический заряд — так называемый барионный заряд (В), считая, что у лёгких частиц (фотонов, нейтрино, электронов, мезонов) он отсутствует (В = 0). Тогда закон сохранения числа Барионов принимает вид закона сохранения барионного заряда.

При взаимодействии Барионов очень высоких энергий возможно рождение антибарионов.

Закон сохранения числа Барионов, или барионного заряда, обобщается на процессы с участием антибарионов, если принять, что барионные заряды антибариона и Бариона противоположны по знаку (как это и следует из общих принципов квантовой теории поля). Если барионный заряд Бариона положить равным единице (B = 1), то у антибарионов В = -1, а барионный заряд системы частиц просто равен разности числа Барионов и антибарионов в этой системе. Одним из проявлений закона сохранения барионного заряда является то, что рождение антибариона обязательно сопровождается рождением дополнительного Б. (см. Аннигиляция и рождение пар).Высказывается гипотеза о существовании глубокой аналогии между электрическим и барионным зарядами. Подобно тому, как электрический заряд является источником электромагнитного поля, барионный заряд можно рассматривать как источник поля сильного взаимодействия. Электромагнитное взаимодействие заряженных частиц осуществляется благодаря их обмену незаряженными частицами — фотонами; аналогично сильное взаимодействие Барионов, например протонов и нейтронов, обусловлено их обменом мезонами — частицами, лишёнными барионного заряда.

Странность

В физике элементарных частиц странность S — квантовое число, необходимое для описания определенных короткоживущих частиц. Странность частицы определяется как:

 

 

где

— количество странных антикварков и

— количество странных кварков.

Причина для такого непонятного с первого взгляда определения в том, что концепция странности была определена до открытия существования кварков, и для сохранения смысла изначального определения странный кварк должен иметь странность −1, а странный антикварк должен иметь странность +1.

Для всех ароматов кварков (странность, очарование, прелесть и истинность) правило следующее: значение аромата и электрический заряд кварка имеют одинаковый знак. По этому правилу любой аромат, переносимый заряженным мезоном, имеет тот же знак, что и его заряд.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: