Глава 3 Результаты исследований и их обсуждение

3.1 Изучение особенностей лектин-индуцированной продукции Н2О2 нейтрофилами с пониженным содержанием холестерина

Для исследования особенностей лектин-индуцированной продукции Н2О2 нейтрофилами с пониженным содержанием холестерина регистрировали кинетики тушения флуоресценции скополетина, возникающие при взаимодействии молекулы скополетина с молекулой пероксида водорода, продуцируемого нейтрофилами.

Для характеристики процесса лектин-индуцированной генерации Н2О2 нейтрофилами использовали два параметра:

1. скорость продукции Н2О2 – численно равна модулю тангенса максимального угла наклона линейного участка кинетической кривой;

2. длительность лаг-периода продукции Н2О2 (зависит от скорости сборки функционально активного НАДФН-оксидазного комплекса в плазматической мембране) – определяется длинной линейного горизонтального участка кинетической кривой от момента добавления в пробу лектина до момента начала спада (тушения флуоресценции).

Следует отметить, что программа регистрации данных на использованном спектрофлуориметре позволяет выводить данные в формате ASCII, однако не обладает возможностью для их первоначальной обработки. В таком виде полученные экспериментальными данными могут быть импортированы в программу Origin (см. рисунок 3.1) для графической визуализации и последующего сохранения проекта в виде рисунка, который может быть вставлен потом в текстовый документ.

Рисунок 3.1 – Графическая визуализация кинетик тушения скополетина в программе Origin

В программе Origin выполняется нормировка полученной кинетики на максимальное экспериментальное значение, чтобы выразить интенсивность сигнала в относительных величинах. Кроме того, оптимальным образом подбираются стили графической визуализации данных (стили, толщины, цвета линий и шрифтов). Для лучшего восприятия графической информации кинетические кривые тушения флуоресценции скополетина в пробах с различным типов нейтрофилов – обработанные и необработанные MβCD –  представляются в одном проекте (на одном рисунке) с использованием нескольких слоев. Это позволяет проследить изменение выбранных характеристических параметров процессов, происходящих в системе при модификации свойств плазматической мембраны нейтрофилов.

Стоит отметить, что для получения достоверных результатов в биофизических исследованиях необходимо проведение серии экспериментов и дальнейшая статистическая обработка результатов. Анализ экспериментальных кривых – аппроксимацию линейного участка и последующую статистическую обработку результатов – также удобно производить при помощи средств Origin (рисунок 3.2).

Рисунок 3.2 – Графическая визуализация кинетик тушения скополетина в программе Origin (аппроксимация линейного участка кинетической кривой)

В ходе экспериментов было обнаружено, что базальный уровень флуоресценции скополетина, находящегося в клеточной среде в отсутствие и в присутствие MbCD, практически не изменялся (рисунок 3.3, кривая 1). При добавлении лектина ConA к суспензии клеток после небольшого промежутка времени (лаг-периода) наблюдалось снижение интенсивности флуоресценции скополетина (рисунок 3.3, кривая 2), свидетельствующее об активации НАДФН-оксидазы и продукции Н2О2 лектин-активированными нейтрофилами.

В присутствии MbCD наблюдалось увеличение лаг-периода активации НАДФН-оксидазы ConA-активированных нейтрофилов с последующим более быстрым снижением интенсивности флуоресценции скополетина, свидетельствующим об увеличении продукции Н2О2 (рисунок 3.3, кривая 3).

Рисунок 3.3 – Кинетические кривые интенсивности флуоресценции скополетина в суспензии контрольных (1) и ConA-активированных нейтрофилов в отсутствие (2) и в присутствии MβCD (3). Нейтрофилы инкубировали в течение 10 мин при 37°С в присутствии MβCD (10 мМ) до внесения Con A (20 мкг/мл)

При действии почти всех использованных лектинов лаг-период активации НАДФН-оксидазного комплекса обработанных клеток увеличивался по сравнению с аналогичным параметром для необработанных клеток.

При изучении кинетики генерации Н2О2 нейтрофилами при действии растительных лектинов было выявлено два различных эффекта влияния экстракции холестерина из мембраны на скорость генерации Н2О2. Обработка нейтрофилов MβCD увеличивала скорость окисления скополетина при действии таких лектинов, как САВА, PHA-L, PHA-E, UDA, WGA и Con A (рисунок 3.4A) – т.е. для большинства тестируемых лектинов наблюдался эффект праймирования НАДФН-оксидазной системы обработанных MbCD нейтрофилов. Однако, экстракция холестерина MβCD уменьшала скорость SBA- и SNA-индуцированной генерации пероксида водорода нейтрофилами (рисунок 3.4Б).

Итак, увеличение лаг-периода и увеличение скорости лектин-индуцированной продукции Н2О2 нейтрофилами после обработки циклодекстринами свидетельствуют о нарушении динамики сборки НАДФН-оксидазного комплекса в плазматической мембране обедненной холестерином. Не исключено, что ключевую роль в этих процессах играет специфическая кластеризация мембранных гликорецепторов, необходимая для эффективной агрегации клеток [4].

Рисунок 3.4 – Кинетические кривые интенсивности флуоресценции скополетина в суспензии контрольных (1) и PHA-L- (A) и SNA-активированных (Б) нейтрофилов в отсутствие (2) и в присутствии MβCD (3). Нейтрофилы инкубировали в течение 10 мин при 37°С в присутствии MβCD (10 мМ) до внесения лектинов (50 мкг/мл). Измерения проводили при 37°С

3.2 Влияние MβCD на лектин-индуцированную агрегацию нейтрофилов

Турбидометрический метод изучения агрегации, предложенный Борном и О'Брайеном, является в настоящее время наиболее распространенным при исследовании агрегации нейтрофилов. Он основан на регистрации изменений светопропускания суспензии нейтрофилов в буфере.

Для подтверждения участия специфической кластеризации мембранных гликорецепторов в процессе сборки НАДФН-оскидазы было исследовано влияние MbCD на агрегацию нейтрофилов при действии лектина WGA. Специализированное программное обеспечение использованного агрегометра Agr Version 2.01, к сожалению, не обладает необходимыми возможностями для обработки полученных данных, однако позволяет выводить данные в формате ASCII, которые, опять же, в таком виде могут быть импортированы в Origin (см. ранее).

В качестве примера рисунке 3.5 представлена типичная кинетика WGA-индуцированной агрегации нейтрофилов, полученная при помощи  – при добавлении к нейтрофилам лектина WGA наблюдается увеличение светопропускания суспензии клеток (рисунок 3.5А, кривая 1), что свидетельствует об образовании клеточных агрегатов. Методом световой микроскопии показано, что в образцах клеточных суспензий, зафиксированных при максимальной степени агрегации после добавления WGA, практически все клетки находились в агрегированном состоянии (рисунок 3.5В). После обработки клеток MbCD степень WGA-индуцированной агрегации нейтрофилов снижается по сравнению с контролем (рисунок 3.5А, кривая 2). На фотографиях суспензий видно, что обработка клеток MbCD при WGA-индуцированной агрегации приводила к уменьшению размеров агрегатов нейтрофилов и увеличению доли единичных, не находящихся в агрегатах клеток (рисунок 3.5Г). 

А    
80 µm

Б

80 µm

В

80 µm

Г

Рисунок 3.5 – Микроскопический анализ WGA-индуцированных агрегатов нейтрофилов после обработки МβCD. А – кинетические кривые WGA-индуцированной агрегации нейтрофилов в отсутствие (1) и присутствие (2) MβCD. Б – одиночные клетки; В – агрегаты, образованные при добавлении WGA (7,5 мкг/мл) к суспензии нейтрофилов в PBS; Г – агрегаты, образованные после добавления WGA к суспензии нейтрофилов, предварительно инкубированной в течение 10 мин при 37°С в присутствии MβCD (10 мМ)

При исследовании стабильности WGA-агрегатов нейтрофилов было выявлено уменьшение степени GlcNAc-индуцированной дезагрегации нейтрофилов с пониженным содержанием холестерина (см. рисунок 2.2, кривая 2). Так, параметр стабильности WGA-индуцированных агрегатов интактных нейтрофилов составлял 85 ± 4%, в то время как этот же параметр для нейтрофилов, предварительно обработанных MbCD, достоверно увеличивался и составлял 97 ± 3% (P<0,05, n=7). Таким образом, у нейтрофилов с пониженным содержанием мембранного холестерина были достоверно снижены степень и скорость WGA-индуцированной агрегации, в то время как параметр стабильности R WGA-агрегатов нейтрофилов увеличивался.

Заключение

В представленной работе показано, что проведение биофизических исследований на современном уровне невозможно без использования информационных технологий на каждом из этапов исследований.

В работе был проведен анализ методик биофизических исследований, а именно – изучение процесса активации НАДФН-оксидазны и количественная характеристика процесса генерации пероксида водорода нейтрофилами (оценка лаг-периода сборки НАДФН-оксидазного комплекса и скорость генерации Н2O2), исследование процессов агрегации и дезагрегации клеток, а также средств обработки полученных результатов.

Произведение расчетов требует вдумчивого подхода к выбору вычислительных сред, поскольку для выполнения относительно несложной обработки больших массив данных лучше использовать специально созданные для этого программы (например, Origin®). В то время как мощные вычислительные системы (Mathematica, MatLab) могут увеличивать временные затраты на проведение вычислений без улучшения выходных результатов, однако позволяет создавать собственные алгоритмы расчета прикладных параметров исследуемых структур. В каждом конкретном примере исследования зачастую необходимо применение широкого спектра средств ИТ.

Программное обеспечение аппаратного исследовательского комплекса в ряде случаев требует интеграции в общий программный комплекс, поскольку в настоящее время одной из проблем использования спектра приборов требует как знаний по использованию программных продуктов приборов, так и часто ограничивает возможности применения результатов проведенных измерений.

Список литературы к реферату

1. Лакович Дж. Основы флуоресцентной спектроскопии // Пер. с англ. М., 1986. – 453 с.

2. Поликарпов, В.М. Современные методы компьютерной обработки экспериментальных данных: учебное пособие / В.М. Поликарпов, И.В. Ушаков, Ю.М. Головин. – Тамбов: Изд-во Тамб. гос. техн. ун-та, 2006. – 84 с.

3. Горудко, И.В. Лектин-индуцированное образование межклеточных контактов, устойчивых к действию гаптенных углеводов, и внутриклеточная сигнализация: дис.... канд. биол. наук: 03.00.02 / И.В. Горудко – Мн., 2001. – 173 с.

4. Тимошенко, А.В. Кластеры мембранных рецепторов и их движение в клетках / А.В. Тимошенко, С.Н. Черенкевич // Успехи совр. биол. – 1990. – Т. 109, Вып. 2. – С. 206 – 218.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: