Механизмы диффузии атомов в полупроводниках

 

В кристаллических полупроводниках диффундируют собственные и примесные атомы. Диффузия собственных атомов называется самодиффузией, диффузия примесных атомов - примесной диффузией.

Назовём регулярным положением атома в кристалле то, в котором он проявляет присущие ему предназначение и свойства. Регулярные положения собственных атомов – в узлах кристаллической решётки. Для примесных атомов регулярными могут быть как узлы, так и междуузлия. В узлах располагаются примеси, создающие мелкие донорные и акцепторные центры - . Именно их внедрение в узлы в требуемом количестве является целью микроэлектронной технологии. Примеси малого радиуса  располагаются в междуузлиях.

Примеси внедрения малого радиуса диффундируют по прямому междуузельному механизму. Это значит, что они совершают переход или акт миграции, или скачок, непосредственно из одного междуузлия в другое (рис. 2).

 

Рис. 2. Прямой междуузельный механизм диффузии

 

Коэффициент диффузии  по прямому междуузельному механизму,

 (24)

 

где , - энергия активации диффузии примеси внедрения.

Собственные атомы и примеси замещения диффундируют при посредстве элементарных точечных дефектов кристаллической решётки – вакансий  и собственных междуузельных атомов . Вакансия – это узел кристаллической решётки, из которого удалён собственный атом. Собственный междуузельный атом суть аналог примеси внедрения (рис. 3).

 

Рис. 3. Вакансия  и собственный междуузельный атом

 

Вакансии и собственные междуузельные атомы являются необъемлемой подсистемой кристалла. В состоянии термодинамического равновесия они образуются по механизму Шоттки – при переходе атома из узла в объёме на поверхность создаётся вакансия, при переходе собственного атома с поверхности в объём создаётся междуузельный атом. Концентрации равновесных точечных дефектов  и  зависят только от температуры и определяются свободными энергиями Гиббса их образования  и . Из обзора Фэхи, Гриффина и Пламмера [2]


(25)

 

При , .

По соседству с вакансиями и междуузельными атомами всегда имеются занятые узлы решётки или свободные междуузлия, в которые можно совершить скачок, поэтому подвижность их очень высока. Они совершают термически активированные случайные блуждания, преодолевая потенциальные барьеры между своими регулярными положениями.

Роль точечных дефектов в диффузии примесей замещения заключается в следующем. Примесный атом , находящийся в узле, захватывает точечный дефект и образует с ним высокоподвижный комплекс, который движется по кристаллу до тех пор, пока вследствие взаимодействия с другим точечным дефектом не исчезнет. Примесный атом в результате оказывается в другом узле решётки.

Если подвижный комплекс включает вакансию, то говорят, что диффузия идёт по вакансионному механизму. Образование и распад примесно-вакансионного комплекса описывается квазихимической реакцией

 

 (26)

 

Исчезновение комплекса происходит по реакции

 

 (27)

 

Физически комплекс представляет собой примесный атом и вакансию, расположенные в соседних узлах. Энергия связи достаточно велика, так что комплекс и окружающие его атомы слегка релаксируют. Механизм миграции выглядит следующим образом. Поскольку энтальпия миграции вакансии очень мала, то атом  легко совершит первый скачок, поменявшись местами с вакансией. Но чтобы он не возвратился назад, а совершил скачок в следующий узел, тот должен оказаться вакантным. При указанных выше равновесных концентрациях вакансий вероятность такой конфигурации очень мала. Намного вероятнее оказывается частичная диссоциация комплекса , обход вакансией вокруг атома  на расстоянии вторых соседей и подход к нему с противоположной стороны. После обмена местами  и  этот процесс повторяется снова (рис. 4). Вакансия как бы ведёт примесный атом, указывая ему направление очередного скачка. Кристаллическая решётка кремния особенно благоприятствует такому механизму диффузии, так как в ней имеется четыре пересекающиеся оси симметрии третьего порядка [111].

 


Рис. 4. Вакансионный механизм диффузии

 

Если в состав подвижного комплекса входит собственный междуузельный атом , то говорят, что диффузия идёт по междуузельному механизму.

Выделяют три разновидности междуузельного механизма диффузии:

- парный междузельный механизм описывается квазихимической реакцией

 

 (28)

 

- механизм вытеснения описывается квазихимической реакцией

 

 (29)

 

Символ  обозначает примесный атом в чисто междууузельной позиции, символом  обозначена «гантельная» конфигурация примесный атом - собственный атом, расположенная в узле решётки. Энергетически обе эти разновидности междуузельного механизма эквивалентны.

- диссоциативный механизм, или механизм Франка-Тэрнбала описывается квазихимическими реакциями

 

 (30)

 

Примесный атом замещения переходит в междуузельную позицию самостоятельно, вследствие теплового движения, в результате образуется примесно-междуузельный комплекс и вакансия, далее диффундирующие независимо. Наглядная модель диффузионных скачков по междуузельному механизму показана на рис.5.

Рис. 5. Междуузельный механизм диффузии

 

Исчезновение примесно-междуузельного комплекса происходит по реакции

 

(31) [1]

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: