Минимальный промежуток времени, через который процесс в колебательном контуре полностью повторяется, называют периодом электромагнитных колебаний

Формула для определения периода свободных электромагнитных колебаний была получена английским физиком Уильямом Томсоном в 1853 году, и в настоящее время носит его имя.

Из формулы видно, что период колебательного контура определяется параметрами составляющих его элементов: индуктивностью катушки и ёмкостью конденсатора. Из формулы Томсона также следует, что, например, при уменьшении ёмкости или индуктивности период колебаний должен уменьшиться, а их частота — увеличиться и наоборот.

Это легко проверить на опыте. Изменим в нашей установке ёмкость конденсатора. Разряжая конденсатор на катушку, видим, что колебания стрелки гальванометра участились.

В заключении отметим ещё одну важную особенность электромагнитных колебаний в контуре: если не пополнять извне заряды на обкладках конденсатора, то их колебания довольно быстро прекратятся. Это объясняется наличием сопротивления у проводников: при протекании тока проводники нагреваются, на что расходуется энергия контура. Чтобы колебания в контуре не прекращались, достаточно подключить контур к источнику тока, напряжение которого изменяется периодически с определённой частотой, который будет вбрасывать внутрь цепи новые порции энергии, не давая ей израсходоваться полностью. В этом случае в контуре будут существовать вынужденные электромагнитные колебания, происходящие с частотой, равной частоте изменения напряжения источника тока.

В том случае, когда частота переменного напряжения совпадает с частотой колебаний контура, наступает резонанс. При этом наблюдается увеличение силы тока.

Конспект урока "Принципы радиосвязи и телевидения"

 

Первое экспериментальное подтверждение существования электромагнитных волн принадлежит Генриху Рудольфу Герцу. Напомним, что вибратор Герца представлял собой два стержня с шариками на концах. Шарам сообщались большие разноимённые заряды, в результате чего между ними происходил электрический разряд. При этом в самих стержнях возникали электромагнитные колебания. Приёмное устройство состояло из проволочного витка с двумя шарами на концах. Приём электромагнитной волны наблюдался в виде маленькой искры, которая проскакивала между шарами.

Эксперименты Герца показали, что с помощью электромагнитных волн можно подавать и принимать сигналы. Но сам Герц не видел практического применения открытых им электромагнитных волн, так как все удачные эксперименты проводились в очень малой области пространства — в пределах лабораторного стола.

Однако его опыты послужили толчком для исследования новых возможностей приёма и передачи электромагнитных волн. Впервые мысль о применении электромагнитных волн для передачи сигналов на расстояние высказал Александр Степанович Попов. В 1894 году он собрал радиоприёмник, регистрирующий электромагнитные волны, возникающие при грозовых разрядах.

А уже в апреле 1895 года Попов при помощи созданных им генератора и приёмника передал первую в мире беспроводную радиограмму на расстояние в двести пятьдесят метров. Она содержала всего два слова: «Генрих Герц».

Схема передатчика Попова достаточно проста. Он представлял собой колебательный контур, питаемый от батареи. Индуктивностью в контуре выступала вторичная обмотка катушки, а ёмкостью — искровой промежуток. При нажимании на ключ в искровом промежутке проскакивает искра, вызывающая электромагнитные колебания в антенне. Антенна — это открытый вибратор, излучающий электромагнитные волны.

Для регистрации принятых волн, Попов использовал специальный прибор — когерер, изобретённый французским физиком Эдуардом Бранли в 1890 году. Когерер представляет собой стеклянную трубку, в которой находятся металлические опилки. В один конец трубки вставлена металлическая пластина, а в другой — провод, соприкасающийся с опилками.

При нормальных условиях сопротивление опилок очень большое, но под действием электромагнитных колебаний между ними проскакивают искорки, опилки слипаются, и сопротивление когерера уменьшается в несколько сот раз.

Итак, Александр Степанович включил когерер в цепь из источника тока, звонка и молоточка, который мог ударять по трубке когерера.

Изначально сопротивление когерера таково, что силы тока, протекающего по цепи, недостаточно для притяжения якоря в реле. Но как только появляется электромагнитная волна, в опилках проскакиваю искорки и сопротивление когерера падает. Это влечёт увеличение силы тока в цепи и якорь реле замыкает цепь электромагнита, включённого параллельно цепи когерера. А молоточек звонка сигнализирует о приходе волны. При этом цепь размыкается и молоточек ударяет по коге́реру, встряхивая опилки и, тем самым, увеличивая их сопротивление — реле размыкает цепь звонка.

Летом 1895 года Попов усовершенствовал свой прибор, добавив к нему приёмную антенну, а в марте 1896 года — телеграфный аппарат для приёма текста. Как мы уже упоминали, 24 марта 1896 года были переданы первые в мире слова с помощью азбуки Морзе — «Генрих Герц».

Почти одновременно с Поповым итальянец Гульельмо Маркони создал свою радиотелеграфную установку и в 1897 году получил на неё патент, чего не сделал в своё время Попов.

Поэтому во многих странах официально именно Маркони считается изобретателем радио, хотя Попов и был первым. В 1901 году Маркони потряс мировую общественность, осуществив первую в историю передачу радиосигналов через Атлантический океан на расстояние в 1800 километров.

Итак, принципы радиосвязи заключаются в следующем:

· в передающей антенне создаётся переменный ток высокой частоты;

· ток вызывает переменное электромагнитное поле, которое распространяется в пространстве в виде электромагнитной волны;

· электромагнитная волна вызывает в приёмной антенне переменный ток той же частоты, что и частота передатчика.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: