Процесс поиска неисправностей

На этапе анализа ситуации следует:

1. проанализировать, в каком режиме работы АПС, при выполнении какой программы и в каком месте программы произошел отказ;

2. зафиксировать симптомы неисправности:

1) состояние индикаторов РС,

2) сообщения программы (диспетчера, ОС, оболочек и т. д.),

3) звуковые сигналы, штатные и нештатные;

3. попытаться перезапустить программу;

4. перезагрузить систему ("теплый" рестарт, или "холодный" старт);

5. внимательно просмотреть, как проходят рестарт, POST-контроль;

6. проверить параметры АПС в CMOS-памяти, с помощью процедур SETUP;

7. выключить ВС, проверить качество соединений кабелей интерфейсов, подключения питания, температурный режим всех ИМС (наощупь), степень загрязненности плат;

8. если POST-программа не выполняется, перейти к локализации компоненты, используя видео- или аудио-коды, сообщаемыми POST-программой;

9. если POST-программа выполняется, – перейти к тестовой диагностике ВС;

Эффективный поиск неисправностей в оборудовании СВТ требует дедуктивного метода рассуждений для выделения главной проблемы.

Проводя анализ ситуации, нужно постараться понять:

1) причину неисправности и ее тип;

2) связать причину неисправности с первичной компонентой ВС, вызывающей подобный тип неисправностей;

3) провести анализ работы выделенного узла, используя его функциональную схему;

4) предположить вероятный источник ошибки;

5) записать расположение карт контроллеров в слотах, схему подключения кабелей, положение перемычек и переключателей на контроллерах, картах расширения и системной плате;

6) проверить, не возникла ли неисправность после:

- установки другого контроллера в слот расширения (реконфигурация ВС);

- подключения к контроллеру дополнительного периферийного устройства;

- переустановки конфигурации периферийных устройств на контроллерах, периферийных устройствах, системной плате.

Если ошибка возникла вследствие реконфигурации АПС, то следует проверить правомерность проведенных подключений и переустановок, пользуясь руководством пользователя (User Manual) контроллера, периферийного устройства, системной платы.

При возможности, полезно сравнить установки и подключения таких же устройств на другой, аналогичной АПС.

Если все было подключено верно, – вернуть ВС в исходное состояние: выключить только что установленное ПУ и/или контроллер и вновь проверить работоспособность ВС.

Если ошибка осталась, значит, компонента определена неверно, и нужно повторить анализ по пунктам 1) – 4).

Если ошибка устранилась, следует по-очереди заменять элементы узла на заведомо исправные в следующем порядке:

- периферийное оборудование, относящееся к выделенной подсистеме (дисковая, VIDEO, коммуникации, манипуляторы и т. д.), обращая внимание на их конфигурирование;

- кабельные соединения (не спутать подключение шлейфов: выделенная цветом жила плоского шлейфа подключается к первому контакту разъема);

- контроллер, обращая внимание на установленную конфигурацию соответственно типу, объему буферной памяти и т. д. принтера, манипулятора, дисковода и т. п.

Если ошибка осталась, значит, дело не в аппаратной, а в программной конфигурации:

- драйвер не соответствует данному конкретному устройству;

- конфликт драйверов;

- конфликт запросов прерываний;

- пересечение областей векторов прерываний в DRAM

и следует тщательно проверять программную конфигурацию РС при вводе нового оборудования. При обнаружении несоответствия – откорректировать программную конфигурацию АПС.

На этапе тестирования нужно выполнить:

1. запуск тест-программы, наиболее подходящей по составу и возможностям, к выделенному устройству или компоненте АПС;

2. уточнить место возникновения ПЕРВИЧНОЙнеисправности;

3. для определения характера первичной ошибки, провести углубленную диагностику выделенной компоненты, подсистемы, устройства;

4. разобраться в логике работы неисправного узла;

5. подготовить программный материал для углубленной, детальной проверки неисправного узла:

1) подобрать программу углубленного тестирования;

2) выделить необходимый фрагмент программы для его тестирования;

3) написать пример программы, выделяющий данную неисправность (можно использовать отладочную программу DEBUGGER, позволяющую программировать на языке АССЕМБЛЕРА) и проверять его прохождение, трассировку и т. д.);

6. исключить из работы по диагностике все устройства, узлы, компоненты, не участвующие в работе тестируемого узла;

7. запустить подготовленную программу, или пример работы данного узла;

8. проверять работу узла ПО КОМПОНЕНТАМ, используя необходимую КИА и КИП (логический пробник, тестер, осциллограф, логический анализатор и т. д.);

9. выделить неисправную компоненту узла (ИМС, ЭРЭ и т. п.);

10. определить причину возникновения неисправности;

11. принять решение по способу устранения неисправности:

1) замена ИМС, ЭРЭ и т. д.;

2) восстановление контакта;

3) восстановление схемы соединений и т. п.

На этапе РЕМОНТА выполняется собственно ремонт выделенного узла, с соблюдением всех требований персональной электробезопасности и безопасности ремонтируемой аппаратуры (отключение РС от сети питания, извлечение узла из конструктива, работа низковольтным паяльником с заземленным жалом, принятие средств защиты аппаратуры от статического электричества и т. д.).

На этапе ПРОВЕРКИ ПОСЛЕ РЕМОНТА нужно:

1. визуально просмотреть отремонтированный узел на отсутствие механических повреждений компонент;

2. просмотреть под лупой отсутствие замыканий (перемычек из припоя) между выводами заменявшейся компоненты и обрывов печатных проводников вблизи места ремонта;

3. низковольтным тестером или мультиметром проверить отсутствие замыканий по питанию отремонтированного узла (применять тестер с напряжением более 1,5 вольт опасно для ИМС);

4. поставить отремонтированный узел на место в систему;

5. запустить программу проверки работы данного узла (как на этапе тестирования).

На этапе ВОССТАНОВЛЕНИЯ РАБОЧЕЙ КОНФИГУРАЦИИ нужно:

1. восстановить, нарушенную на втором этапе, исходную аппаратную конфигурацию АПС;

2. прогнать тест-программу проверки-диагностики отремонтированного устройства;

3. протестировать АПС, прогоном тест-программ в целом, вместе с периферией;

4. запустить контрольное выполнение рабочей программы в том режиме, в котором была обнаружена неисправность;

5. подробно записать в журнале Технического обслуживания:

- когда и кем был обнаружен дефект;

- внешнее проявление дефекта, в каком режиме работы АПС он проявляется;

- кем и какие меры были приняты для его устранения;

- результаты ремонта, кем и когда он был выполнен;

6. сделать отметку о ремонте в формуляре и сдать АПС пользователю.

Конструкция, разборка и сборка РС клонов IBM

В конце 70-х – начале 80-х годов разобрать компьютер было сложно: фирмы-изготовители пломбировали корпус, и нарушение пломб снимало гарантию изготовителя. Но, с появлением в 1981 году IBM PC, производители позволили пользователю открытый доступ к компонентам компьютера, что, с появлением открытой архитектуры РС, позволяет пользователю самостоятельно проводить не только простые профилактические и ремонтные работы, но и модифицировать, совершенствовать, модернизировать конфигурацию РС в соответствии с потребностями пользователя.

В первых компьютерах все компоненты размещались на одной плате. Для компьютеров с 64- или 128 Кбайт памяти и 8-битовым CPU, объединенная плата с 40 – 50-ю ИМС, была хорошим решением, но с появлением 16- и 32-битовых CPU и компьютеров с памятью 1 Мбайт и более, на плате пришлось бы размещать сотни ИМС, что технологически непросто. С переходом к открытой архитектуре IBM PC/XT, на системной плате появились слоты с разъемами расширения системной шины. На системной плате стали размещать только CPU с его обрамлением, ОЗУ, ПЗУ, CMOS-память, контроллер KBD, формирователи шин, а остальное оборудование (контроллеры видеоадаптера, дисковой системы, порты ввода-вывода и т. д.) – размещать на дочерних платах (картах), вставляющихся в слоты разъемов расширения системной шины.

Предварительный поиск неисправностей стал простым и точным: дисковые накопители, клавиатура, блок питания стали конструктивно законченными, отдельно подключаемыми устройствами. Когда на системной плате размещены только основные компоненты, при неисправности в одном из устройств, найти неисправную компоненту можно быстро, отключая по-очереди отдельные компоненты, просто вынимая их из слотов расширения.

Некоторые фирмы (Zenith, Kaypro и др.) даже разбили системную плату на несколько отдельных плат, заменяя которые, можно отыскивать неисправные узлы и даже модифицировать саму системную плату. В этом случае, основная плата называется объединительной. Обратной стороной открытой архитектуры является снижение надежности работы ВС, т. к. до 90% отказов связано либо с электромеханическими узлами РС, либо – с нарушением контактов в разъемах. Но качество разъемов – дело их технологии и стоимости, а удобство обслуживания и модернизации, плюс замена, при модернизации компьютера, только части, а не целой системной платы и проще, и дешевле.

Благодаря слотам на SВ и дочерним платам, вставляющимся в эти слоты, ремонт упростился до замены неисправной платы. Ремонтнику требуется только иметь комплект исправных плат. Правда, широкий спектр карт, использующихся в РС, особенно разных фирм изготовителей, далеко не всегда совместимых по архитектуре шины, пользовательским параметрам и т. д., да и на все случаи жизни, – требует уж очень большого ассортимента карт. Тем не менее, имея их и заменив неисправную карту, можно быстро ввести РС в нормальную эксплуатацию, а неисправную плату, карту отремонтировать в хорошо оборудованной мастерской и вновь использовать для замены в будущем.

Разборка и сборка компьютера

Все многообразие конструкций РС можно свести к основным пяти типам:

1) все в одном корпусе (All-On-Oncе) – старые компьютеры с 8-битовым CPU, такие как Apple, Commodore, Atary, Spectrum и т. п.;

2) портативные компьютеры (LapTop, Note-Book и т. п.) со встроенными плоским дисплеем и клавиатурой;

3) РС со встроенным дисплеем на ЭЛТ (TSR-80 моделей I-IV, Macintosh);

4) самые популярные до недавнего времени IBM PC/XT/AT и большинство их клонов, имеют системный блок в прочном корпусе, подключаемые отдельно клавиатуру и монитор, который можно установить на системный блок;

5)системный блок вертикальной конструкции, устанавливаемый на столе (Mini Tower) или на полу (Big Tower), что освобождает место на столе и обеспечивает простой доступ к разъемам слота и платам.

Для разборки и сборки РС нужно иметь конкретное техническое руководство (User Manual) для данного РС. Это сэкономит много времени и позволит избежать ошибок и привнесенных неисправностей.

Инструкция по разборке компьютера, от начала до конца состоит из конечного числа операций, выполняющихся последовательно. Нужно разбирать только то, что требуется для выявления дефекта, или ремонта неисправной компоненты. Более широкий демонтаж – не только пустая трата времени, но и источник новых неисправностей. Так что настоятельно рекомендуется, несмотря на простоту разборки, найти указания по разборке-сборке данного конкретного компьютера в его техническом руководстве или справочной литературе. В литературе можно найти очень подробное описание последовательности разборки и сборки большинства компьютеров, начиная с РС/ХТ/АТ и кончая РS/2 моделей 60 и 80, с правилами доступа ко всем компонентам – от карт в слотах, до блоков питания, дисководов и SВ в целом.

Современная конструкция системного блока проста. Если снять с него крышку корпуса, или боковые стенки откроется доступ к его внутренним компонентам.

В машинах конструкции DeskTop (настольный, с горизонтальным расположением системной платы) нужно отвернуть винты сзади системного блока, а в конструкциях Tower – сзади, или сзади и сбоку, и крышка снимается. На системной плате размещены, и, в большинстве своем – припаяны, элементы вычислителя: CPU, FPU, модули обрамления микропроцессора (Chip-Set). В специальных разъемах SВ, – модули памяти SIMM, DIMM, а в панельках (Chip-Sockets) устанавливаются иногда ИМС ROM BIOS, контроллера клавиатуры (типа 8042), CMOS-памяти. Для ранних моделей РС-286, РС-386 и РС-486 в специальный разъем устанавливался математический сопроцессор, а для некоторых старых моделей РС-286, в Chip-Sockets устанавливался и набор отдельных микросхем оперативной памяти (RAM).

Неприпаиваемые элементы могут сниматься и устанавливаться и без специального инструмента, с помощью небольшой шлицевой отвертки, хотя для облегчения снятия ИМС желательно иметь специальный экстрактор, а для их установки – специальное приспособление. Модули памяти SIMM, DIMM устанавливаются руками в их разъемы под углом, затем поднимаются до вертикального положения и автоматически закрепляются соответствующими защелками. Все остальные компоненты (карты адаптеров расширения) просто устанавливаются в слот расширения системной шины на SВ и закрепляются винтом.

Другие компоненты ВС, такие как дисководы FDD, HDD, CD-ROM, вдвигаются по направляющим в конструктивный блок и фиксируются защелками, либо винтами на боковых сторонах системного блока. Для их снятия и установки иногда требуется снять лицевую панель, либо лицевые накладки, которые закрепляются пружинными фиксаторами.

Ручные инструменты для демонтажа/монтажа

1) 3/16" торцевой ключ;

2) 1/4" торцевой ключ;

3) 3-мм отвертка с крестообразным шлицом;

4) 3-мм шлицевая отвертка с плоским лезвием;

5) 5-мм отвертка с крестообразным шлицом;

6) 5-мм отвертка с плоским лезвием;

7) экстрактор для снятия микросхем с DIP-корпусами;

8) пинцет;

9) держатель элементов типа "клещи";

10) бокорезы-острогубцы;

11) "бархатный" надфиль;

12) маленькие плоскогубцы.

Принадлежности пайки-отпайки

Для отпайки и припайки электронных компонент на платах компьютера понадобятся следующие инструментальные средства:

1) маломощный паяльник на 25 Вт 36 вольт (желательно с регулировкой температуры), но обязательно с заземленным жалом.;

2) набор сменных стержней к паяльнику:

- одностороннее жало;

- стержень с внутренним отверстием для пайки ЭРЭ и ИМС с аксиальными выводами;

- кинжалообразное жало для пайки ИМС с планарным выводами;

- групповое жало на 14 и 16 контактов (выпаивание ИМС в DIP-корпусах);

3) медный теплоотвод (пинцет с медными наконечниками);

4) отсос припоя (лучше – паяльник с отсосом припоя);

5) средство очистки отверстий платы от остатков припоя (набор клинообразных палочек);

6) медицинская игла для люмбальной пункции, с тонко заправленным концевым конусом
d = 0,8 мм. Используется для отпаивания выводов резисторов, конденсаторов, полупроводниковых диодов, транзисторов, а также с ее помощью можно отпаивать и ИМС в DIP-корпусах;

7) тонкий стальной крючок. Используется для подъема выводов ИМС при отпайке ИМС с планарными выводами;

8) низкотемпературный припой (ПОС-40, ПОС-65, сплав Розе и т. п.);

9) жидкая канифоль, или другой бескислотный флюс;

10) маленькая художественная кисточка;

11) кисть или щетка с коротким жестким ворсом (для промывки от флюса мест пайки);

12) чистая ветошь;

13) спирт технический, ректификат.

Правила техники безопасности при работе с электрооборудованием, требуют для работе с электронным оборудованием использования паяльников только с безопасным для жизни напряжением питания, не более 36 вольт. Иначе, при аварийном пробое изоляции проводов питания или нагревательного элемента на корпус паяльника, работающий с ним человек, может получить поражение электрическим током.

При пайке электро-радио-элементов (ЭРЭ): резисторов, конденсаторов, и особенно – полупроводниковых приборов: диодов, транзисторов, микросхем и т. п., для их защиты от перегрева требуется отводить тепло от места пайки. С этой целью применяются медные теплоотводы, в простейшем случае, представляющие собой пинцет с достаточно массивными медными наконечниками. При пайке ЭРЭ, этим теплоотводом придерживают отпаиваемый или припаиваемый элемент за вывод, между местом пайки и корпусом элемента.

При замене ЭРЭ, после их выпаивания из платы, отверстия под их выводы часто остаются залитыми остатками припоя, что затрудняет установку на это места нового элемента. Для удаления этих остатков припоя лучше всего использовать паяльник с отсосом, или отдельный отсос припоя. Если под руками нет такого оборудования, проще всего воспользоваться остро заточенными деревянными палочками. Отверстие, из которого нужно удалить припой, с одной стороны платы нагревается паяльником, а с другой стороны, когда припой в отверстии расплавится, в отверстие вставляется острие деревянной палочки. После этого паяльник убирают и, после затвердевания припоя, вытаскивают палочку. Отверстие остается открытым и новый ЭРЭ легко может быть вставлен для припаивания.

После окончания паяльных работ, плату следует очистить от остатков флюса. Техника такой очистки состоит в том, что на очищаемое место помещают небольшой кусочек хлопчато-бумажной ткани, смоченной этиловым спиртом, или бензо-спирто-смесью, и несколько раз проводят по ней жесткой кисточкой или щеткой, соответствующего размера. При необходимости, эту операцию повторяют до полной очистки платы от остатков флюса.

Аппаратный и программный аспекты диагностики АПС

Диагностика неисправностей ПЭВМ имеет два аспекта: аппаратный и программный.

Аппаратный аспект подразумевает использование аппаратурных средств диагностики – стандартной КИА, специальной КИА, сервисных плат, устройств и комплексов.

При аппаратном методе диагностики, используются инструменты и приборы для измерений напряжений, параметров сигналов и логических уровней в схемах PC. Этот метод требует глубоких знаний логики работы РС, микросхемотехники, радиоэлектроники, ЭРИ и определенных навыков работы с сервисным тестовым оборудованием.

Следует отметить, что чисто аппаратная диагностика практически не встречается, разве что при диагностике с использованием словарей неисправностей или таблиц эталонных состояний, да и то – симптомы, которыми в этих случаях приходится руководствоваться, выработаны либо ОС, либо
тест-программой, либо микропрограммным тестом, а это уже не чисто аппаратная диагностика. Чисто аппаратной можно считать диагностику отдельных узлов ЭВМ, таких как ТЭЗ, которые проверяются не при автоматическом выполнении АПС проверочных тестов, а при подаче тестирующих последовательностей на исследуемый узел непосредственно от сервисного устройства, например УТК, или генератора стимулирующих воздействий.

Программный аспект диагностики подразумевает использование тестирующих программ различных классов: микропрограммные тесты, встроенные тест-программы, внешние тест-программы общего применения, наконец, – внешние тест-программы углубленного тестирования. Сюда же следует отнести и те небольшие программы или примеры, которые приходится писать самим обслуживателем АПС, для конкретных случаев диагностики неисправностей отдельного узла ЭВМ, ПЭВМ в конкретном режиме его работы.

При программном методе диагностики, большая часть диагностических процедур возлагается на диагностические программные средства. Этот метод требует определенных знаний различных диагностических программ, начиная с POST-программы и кончая программными средствами углубленной диагностики компонент ВС.

Тем не менее, насколько трудно обойтись без программных средств диагностики, настолько и невозможно точно определить место неисправности с точностью до компоненты схемы (ИМС БИС, конкретного ЭРЭ), или до конкретной цепи, без применения аппаратных средств диагностики (осциллографа, мультиметра и т. д.).

Аппаратные средства диагностики РС

Стандартная контрольно-измерительная аппаратура

Для замеров уровней напряжений, токов, сопротивлений, наблюдения осциллограмм сигналов в контрольных точках, измерений параметров электрических сигналов, можно использовать обычную, стандартную КИА, с характеристиками, соответствующими измеряемым сигналам и их параметрам.

Ее краткий перечень и назначения:

1) низковольтный тестер (с напряжением питания не более 1,5 В, но лучше – цифровой мультиметр).

Им можно:

- измерять потенциалы на выводах ИМС, определяя уровни логических 0 и 1, или высокоимпедансное состояние (“воздух”);

- проверять целостность линий связи в печатных платах, без риска повреждения ИМС;

- определять, часто без выпаивания, целостность p-n -переходов в полупроводниковых диодах и транзисторах;

- грубо проверять исправность резисторов и конденсаторов;

- измерять величины питающих напряжений и токи потребления от каналов БП;

2) обычный осциллограф (синхроскоп), к сожалению, не всегда помогает при анализе дефектов в РС, так как на SВ РС очень мало синхронно повторяющихся процессов. Осциллограф применим только для просмотра синхросигналов, сигналов интервального таймера, циклов шины, да и то только в том случае, если удается зациклить процесс обращения к порту или ОЗУ по одному и тому же адресу. Осциллограф, однако, поможет разобраться в работе схемы, имеющей дефекты типа замыкания, приводящие к монтажному ИЛИ (когда выходы двух или более ИМС объединяются замыканием в монтаже). В этом случае, если и не удается просмотреть осциллографом развертку всей последовательности импульсов, можно заметить наличие импульсов неправильной, урезанной амплитуды, но для этого все-таки нужно уметь зациклить нужный кусок программы или микропрограмму;

3) телевизионный осциллограф просто незаменим при анализе работы видеомонитора.
TV-осциллограф позволяет выделить одну строку изображения, засинхронизировать ее, и увидеть на экране синхросигналы строчной развертки, бланкирующие импульсы, уравнивающие сигналы и аналоговый видеосигнал с его уровнями яркости и цветности.

Это удобно в том случае, когда используются видеокарты, формирующие полный телевизионный сигнал для модуляции кинескопа и управления развертками.

4) ч астотомер в диагностике РС применяется редко, и только для точного определения частот задающего генератора синхросигналов и таймеров. Частотомеры обычно имеют довольно низкое входное сопротивление и сильно нагружают исследуемую схему, поэтому к ним дополнительно нужны бестоковые входные адаптеры на полевых транзисторах, или, если хватает чувствительности частотомера, использовать индуктивную петлю связи.

5) двухканальный (многоканальный) осциллограф используются для измерений фазовых характеристик сигналов.

6) запоминающий осциллограф содержит специальную оперативную память и позволяет зарегистрировать однократный или переходной процесс, в том числе, обнаружить помеху в зарегистрированной последовательности сигналов. Прибор очень дорог и имеет малое быстродействие, часто недостаточное для анализа быстрых процессов в РС. Емкости памяти запоминающего осциллографа часто недостаточно для регистрации длинных последовательностей. Возникают и проблемы с поиском сигнала для синхронизации (запуска регистрации) осциллографа. Но важно то, что такой осциллограф позволяет зафиксировать формуоднократного исследуемого сигнала и в этой роли ему нет равных;

7) генератор прямоугольных импульсов вырабатывает непрерывную последовательность импульсов с заданными параметрами и используется, совместно с осциллографом, – для проверки работы пересчетных схем, таймеров и т. п. в СВТ вообще и РС в частности.

Тема: Программные средства диагностики

 

Многие пользователи периодически сталкиваются с теми или иными сетевыми проблемами. Ситуации тут могут быть разные. Скажем, качество связи может ухудшиться и отдельные серверы могут оказаться недоступными. Подобные сбои могут оказаться критичными для пользователей онлайновых сервисов, например, трейдеров, торгующих на фондовом рынке, игроков в сетевые игры и пр. Бывает, что после изменения каких-то настроек на компьютере или смены провайдера вообще не удается получить доступ к сети, а при настройке домашней сети, например, выясняется, что доступ к интернету есть только на одном из компьютеров, и т.п. Во многих подобных случаях приходится проводить диагностику сетевого соединения и проверять работоспособность того или иного удаленного узла.

Встроенные средства Windows - утилиты Ping и Tracert

В OS Windows имеется несколько утилит для диагностики состояния сети, но чаще всего используются Ping и Tracert. Программа Ping отправляет запрос указанному узлу сети и фиксирует время между отправкой запроса и получением ответа (RTT, от англ. RoundTripTime), иными словами, утилита позволяет определить время отклика интересующего сервера. Понятно, что чем оно меньше, тем обмен данными с этим сервером производится быстрее. Программа Tracert выполняет отправку тестового пакета указанному узлу сети, отображая информацию обо всех промежуточных маршрутизаторах, через которые прошел пакет на пути к запрошенному узлу, а также минимальное, максимальное и среднее время отклика каждого из них. Это позволяет оценить, насколько "длинный" путь прошел пакет и на каком участке возникают наибольшие задержки, связанные с передачей данных. Что означают результаты, выдаваемые утилитами Ping и Tracert? Например, отсутствие отклика от удаленного сервера может свидетельствовать о том, что он сейчас недоступен, или же администратор сервера заблокировал эхо-запросы (при этом остальные службы сервера могут нормально работать). Если время отклика (RTT) удаленных серверов слишком велико и не зависит от их месторасположения, скорее всего, качество вашего подключения оставляет желать лучшего и стоит обратиться к вашему провайдеру. Впрочем, некоторый выигрыш в скорости можно получить и путем настройки интернет-соединения на максимальное быстродействие, для чего лучше воспользоваться специальными утилитами-оптимизаторами, такими как TweakMASTER, но это уже совсем другая тема. Слишком "длинный" маршрут до интересующего сервера (то есть большое количество промежуточных маршрутизаторов на пути соединения с сервером) часто приводит к замедлению связи с ним. Если это критично, то имеет смысл попытаться поискать варианты сокращения длины маршрута. Например, в случае игровых серверов можно сделать выбор в пользу тех, которые находятся как можно "ближе" к серверу вашего интернет-провайдера. Если утилиты показывают, что тестовые пакеты не проходят дальше сервера вашего провайдера, весьма вероятно, что возникли проблемы на его стороне, а может быть это плановые профилактические работы. В применении утилит Ping и Tracert нет никаких хитростей, но технически использовать их не очень удобно. Для запуска ping-теста или трассировки придется открывать окно командной строки и вводить команду, возможно, еще и с параметрами, которые нужно либо запоминать, либо каждый раз обращаться к справке. Например, для проверки работоспособности узла www.3dnews.ru потребуется ввести в командной строке команду ping www.3dnews.ru, а чтобы выяснить путь прохождения пакетов до данного узла - команду tracert www.3dnews.ru. Результаты выполнения этих команд представлены ниже и представляют собой несколько текстовых строк. Отметим, что запускать указанные команды можно и через меню "Пуск" > "Выполнить", но в этом случае окно программы автоматически закрывается сразу после завершения ее работы и все результаты будут потеряны.

 

 

Гораздо удобнее использовать специализированные утилиты, которые способны проследить "путешествие" пакетов по сети и по IP-адресу сервера сообщить о нем дополнительную информацию. Подобные утилиты могут оказаться весьма полезными для быстрого анализа и идентификации источника сетевых проблем. На использовании утилит такого плана мы и остановимся в данной статье.

Диагностические сервисы

Сначала вкратце расскажем об альтернативном варианте диагностики сети - с помощью специальных онлайновых сервисов. В качестве примеров таковых можно привести WhatIsMyIPAddress.com и Yougetsignal.com, а также Whois-сервис. С помощью сервиса WhatIsMyIPAddress.com можно узнать свой внешний IP-адрес, если вы его не знаете или он у вас динамический. Также можно путь прохождения пакетов между своим компьютером и данным сервером. Сделать это просто, нужно в меню "IP Tools" выбрать функцию "VisualTraceroute", ввести свой внешний IP-адрес и щелкнуть по кнопке "VisualTraceroute".

 

Также можно воспользоваться инструментом "IP lookup" для того, чтобы выяснить кое-какие детали об интересующем IP-адресе, включая имя хоста, географические координаты и местоположение на карте мира. Зачем это нужно? Ну, например, для выхода на источник вторжения в вашу систему, если вы таковое зафиксировали.

 

Воспользовавшись функцией "VisualTraceRouteTool" на сервисе Yougetsignal.com, также можно провести трассировку, для чего достаточно ввести URL сервера или его IP-адрес и щелкнуть на кнопке"HostTrace". В итоге сервис отобразит путь следования пакетов на карте мира, а также в виде списка промежуточных серверов с указанием общего числа переходов и принадлежности каждого из них конкретной стране.

 

Активировав функцию "NetworkLocationTool", можно выяснить географическое положение любого сервера по его IP-адресу.

 

А воспользовавшись функцией "WHOIS lookupTool" можно получить информацию о сервере с информационного сервиса WHOIS.

 

Whois-сервис поможет установить время отклика интересующего сервера (функция "Ping"), определить путь прохождения запроса до сервера и узнать, сколько и какие промежуточные интернет-серверы, маршрутизаторы и другие устройства участвуют в пересылке данных на сервер и обратно (Tracert).

 

Кроме того, с помощью функции "IP Lookup" можно выяснить по имени хоста его IP-адрес (либо наоборот), а функция "Whois" подскажет, свободен указанный домен или занят. Если домен занят, то можно выявить его владельца и то, как с ним связаться (если вы, например, желаете купить это доменное имя).

 

Диагностические утилиты

VisualRoute 2010 14.0a

Распространение: условно бесплатная Программа VisualRoute считается одним из лучших решений для диагностики сети и отличается высокой скоростью визуальной трассировки. Она отображает маршрут прохождения пакетов на карте мира и выводит список узлов, сопровождая его дополнительной информацией (адрес узла, его расположение в сети и т.д.). Одновременно строится диаграмма времени прохождения пакетов. Помимо трассировки, VisualRoute позволяет получить дополнительную информацию о любом узле (с помощью информационного сервиса WHOIS) и провести проверку его доступности, то есть заменяет утилиту Ping. Программа поставляется в нескольких редакциях (русскоязычная локализация отсутствует). Для домашних пользователей интерес представляют платная редакция VisualRoutePersonal и бесплатная VisualRouteLite. Возможности бесплатной версии ограничены графическим отображением пути прохождения пакетов (панель "RouteGraph"). Демо-версия редакции VisualRoutePersonal работоспособна в течение 15 дней и полностью функциональна, стоимость коммерческой версии составляет 49,95 долл. Интерфейс VisualRoute состоит из нескольких окон, часть из которых открывается по умолчанию, а другие активируются через панель инструментов. Размер и положение окон могут изменяться по желанию пользователя.

 

Для осуществления ping-теста требуется указать программе IP-адрес или имя хоста в поле адреса и щелкнуть на кнопке "Plot". Интервал времени может быть изменен через скрываемое меню в верхней части графика, а масштаб графика - двойными щелчками левой/правой кнопок мыши. По любой точке на графике можно получить более подробную информацию, просто щелкнув на ней мышью.

 

Для проведения трассировки нужно ввести адрес сервера и щелкнуть на кнопке "Trace". В результате программа покажет путь следования пакетов с указанием IP-адресов всех промежуточных серверов (панель "RouteGraph"). Для любого из них можно получить более подробную информацию, просто наведя мышку на адрес сервера. В частности, можно узнать, в какой стране/городе находится сервер и к какой сети относится, а также выяснить время прохождения запроса (RTT) и процент потерь сетевых пакетов (Loss) на промежуточных участках маршрута. В зависимости от значения RTT, серверы маркируются различными цветами: самые быстрые - зеленым, самые медленные - красным. В итоге, легко визуально понять, где имели место проблемы. Кстати, о скорости перемещения данных на разных участках также можно судить визуально - наблюдая за их движением на панели "RouteGraph".

 

Географическое местоположение серверов отображается на карте мира (окно "WorldMap"). При работе с окном "WorldMap" изображение можно масштабировать левым и правым щелчками мыши.

 

Помимо этого, в окне "Analysis" утилита выдаст свой вердикт о пропускной способности данного маршрута в целом, с указанием общего числа переходов, среднего времени прохождения запроса на промежуточных стадиях и укажет переходы, скорость на которых оказалась ниже средней.

 

Кроме того, можно увидеть путь движения пакетов в табличной форме в окне "TablePane". По умолчанию данная панель закрыта и открывается щелчком по кнопке "Table". Данные в табличной форме содержат информацию о каждом из переходов, включая IP-адрес, имя узла, географическое положение, принадлежность к конкретной сетевой магистрали и данные Loss и RTT. Можно щелкнуть на любом из узлов, чтобы получить по нему информацию с сервиса WHOIS.

 

При желании, также можно воспользоваться инструментами OmniPath и NetVu, активируемыми также через панель инструментов, правда, данные инструменты доступны только в редакциях Business и SupportPro. Инструмент OmniPath показывает все возможные маршруты движения пакетов и позволяет сравнить их между собой (впрочем, их удается выявить далеко не всегда). Это позволит увидеть, какие маршруты являются более быстрыми или более медленными и имеют самый высокий либо низкий процент потери пакетов. Инструмент NetVu идентифицирует различные типы узлов сети, выявляя те, из которых возможны многократные варианты перемещения, и позволяет оценить полученные в итоге маршруты.

 

3D Traceroute 2.4.39.2

Распространение: условно бесплатная Программа 3D Traceroute представляет собой утилиту для визуальной трассировки, отображающую время прохождения пакетов в виде эффектного трехмерного графика. Данный график, правда, строится небыстро, но зато его потом можно перемещать, поворачивать и масштабировать, а также вывести на печать или сохранить. Одновременно с графиком создается список узлов с разнообразной справочной информацией. По любому из узлов можно получить данные с сервиса WHOIS. Имеется возможность провести ping-тест указанного сервера. Кроме того, с помощью 3D Traceroute можно просканировать порты, проанализировать заголовки почтовых сообщений на спам (проверка ведется по базе данных RBLs - RealtimeBlackholeList, содержащей замешанные в рассылке спама IP-адреса), синхронизировать время и т.д. Русскоязычная локализация программы отсутствует, а поставляется она в двух редакциях: платной 3D TraceroutePro и бесплатной 3D TracerouteFreeware. В бесплатной версии урезаны возможности визуального представления трассировки (в частности, не отображается путь прохождения пакетов на карте мира), нельзя получать WHOIS-данные сразу с нескольких WHOIS-серверов, не предусмотрена интеграция с почтовыми программами и браузерами и пр. Демо-версия программы 3D TraceroutePro отсутствует, то есть для ознакомления с ней придется скачать 3D TracerouteFreeware, а стоимость коммерческой редакции 3D TraceroutePro составляет 23,95 евро. 3D Traceroute не требует установки. Окно утилиты содержит поле для ввода адреса, набор вкладок, обеспечивающих доступ к основным функциям программы, панель SideBar (ее можно скрыть) и рабочую область с отображением результатов трассировки.

 

Для проведения ping-теста надо активировать вкладку "Tools", в разделе "PingTools" щелкнуть на кнопке "SinglePingWindow", ввести в соответствующем поле IP-адрес или имя хоста и щелкнуть на кнопке "DoIt!". Полученный в ходе проверки узла график можно вращать, перемещать и масштабировать, используя кнопки на панели инструментов. Изменять параметры тестирования (размер пакетов, время ожидания) можно только в редакции Pro.

 

Для проведения трассировки нужно в главном окне программы ввести URL в поле "Target" и щелкнуть на кнопке "Trace". По умолчанию результаты трассировки представляются в виде трехмерного графика (вкладка "3D Trace"), который, используя опции панели SideBar, можно перемещать, разворачивать и масштабировать, а также придавать графику глубину и объемность. График также можно скопировать в буфер обмена и распечатать. На наш взгляд, проку от данного представления немного, поскольку даже имена серверов выглядят нечитабельно (можно, конечно, путем вращения графика найти вариант приемлемого отображения имен, но это потребует лишних усилий). Так что, на наш взгляд, трехмерное отображение - чисто рекламный ход, привлекающий внимание к программе, и ничего более. Гораздо удобнее работать с двумерным графиком трассировки, подобно представленному в VisualRoute. Рис. 19

 

Вместе с тем, результаты трассировки несложно увидеть в нормальном табличном виде, активировав вкладку "asList". Здесь будет показано общее число переходов и приведен список всех серверов, через которые проследуют пакеты с указанием их IP-адресов и Host-имен. Также будет отображена минимальная, максимальная и средняя скорость движения пакетов на каждом участке пути, время прохождения запроса и процент потерь сетевых пакетов. В зависимости от скорости движения пакетов, соответствующие клетки в таблице маркируются зеленым, желтым либо красным цветами. Одновременно с графиком формируется список узлов с более подробной информацией о них, также можно сравнить параметры прохождения пакетов в дневное и ночное время. Так что понять, на каких узлах имеются проблемы, труда не составляет.

 

Можно увидеть географическое представление маршрута на карте мира (вкладка "GlobeTrace"), но, увы, в бесплатной версии эта возможность недоступна, так что и скриншот мы приводим с сайта разработчиков чисто для общего представления.

 

С помощью 3D Traceroute также можно получить данные с WHOIS-сервисов (вкладка "Whoisandmore"). В платной редакции сканирование будет вестись по базам данных всех регистраторов одновременно, что удобно. В бесплатной редакции придется перебирать регистраторов по очереди, а это - удовольствие уже сомнительное. Список WHOIS-сервисов пополняем через настройки ("Settings" > "Whois").

 

NetInfo 7.0 Build 125


Распространение: условно бесплатная NetInfo - набор из 15 сетевых утилит, объединенных в едином интерфейсе. Среди них есть Рing и Trace, являющиеся полными аналогами системных утилит Windows, но более удобные в применении благодаря комфортному запуску соответствующих процессов. Среди прочих утилит можно назвать Whois (выдает информацию о домене или IP-адресе из баз данных WHOIS), Lookup (производит поиск имени домена по IP-адресу и наоборот) и Finger (отображает информацию о пользователях, подключенных к определенному серверу). А также утилиты Daytime (показывает локальное время дня для указанного удаленного хоста), Time (синхронизирует системное время на компьютере с удаленным сервером, предоставляющем информацию о точном времени), Services (проверяет доступность сетевых сервисов), E-mail (проводит проверку адресов электронной почты на существование) и др. Русскоязычная локализация программы отсутствует, а демо-версия программы работоспособна в течение 30 дней и почти полностью функциональна (не работают инструменты на вкладке "WebCenter"). Стоимость коммерческой версии зависит от типа лицензии - на домашних пользователей рассчитана лицензия Home за 39,99 долл. Окно NetInfo состоит из 15 вкладок, каждая для своей утилиты, но их можно активировать и иначе - путем выбора соответствующей команды из меню "Tools".

 

Чтобы проверить, "жив" ли интересующий сервер, достаточно перейти на вкладку "Ping", ввести URL в поле "Host" и щелкнуть на кнопке "Start". В отчете будет отображена та же самая информация, которую можно увидеть в командном окне после запуска системной утилиты Ping - то есть все отправленные по указанному адресу запросы, а также значения параметров RTT и TTL.

 

Запуск трассировки ничем принципиально не отличается - нужно открыть вкладку "Trace", ввести URL в поле "Host" и щелкнуть на кнопке "Start". В результатах будет показано общее число переходов и отображен список всех узлов, через которые проходили пакеты, с указанием среднего времени прохождения.

 

Воспользовавшись утилитой Lookup, можно без труда узнать имя домена по IP-адресу, либо провести обратный поиск.

 

Столь же несложно получить подробную информацию о домене или IP-адресе, активировав вкладку "Whois".

 

Trace3D 4.02

Распространение: бесплатная Trace3D - удобная утилита для визуального отображения пути движения пакетов. Программу можно скачать и использовать совершенно бесплатно (русскоязычная локализация отсутствует). Для проведения трассировки достаточно ввести IP-адрес или имя хоста и щелкнуть на кнопке "Go". Результаты трассировки отображаются в виде таблицы и трехмерного графика, на котором разными цветами показаны минимальное, максимальное и среднее время прохождения пакетов. В таблице приводятся имена промежуточных хостов и время движения пакетов на каждом участке пути. При просмотре график можно вращать, перемещать и масштабировать. По нему легко визуально определить, на каком участке сети имеются затруднения при прохождении пакетов.

 

VisualTraceRoute 0.8

Распространение: бесплатная VisualTraceRoute - простая утилита для визуальной трассировки. Программу можно скачать и использовать совершенно бесплатно (русскоязычная локализация отсутствует). Никаких сложностей в проведении визуальной трассировки в VisualTraceRoute нет. Нужно ввести IP-адрес или имя хоста в предназначенное для этого поле и щелкнуть на кнопке "Start". Результаты будут представлены в виде таблицы. В ней отображается количество переходов, IP-адреса и имена всех промежуточных узлов, среднее время движения пакетов (в числовом и графическом виде), а также данные TTL на каждом из этапов пути.

 

HyperTrace 2.03
Распространение: бесплатная HyperTrace - простая утилита для визуальной трассировки. Программу можно скачать и использовать совершенно бесплатно (русскоязычная локализация отсутствует). Проведение трассировки здесь организовано предельно просто - нужно ввести IP-адрес или имя хоста в предназначенное для этого поле и щелкнуть на кнопке "Trace". Результаты представлены в виде таблицы с отображением в оной IP-адреса, имени хоста, а также данных TTL и Loss для каждого из этапов пути. По умолчанию процент пропадающих пакетов не указывается, поэтому придется активировать соответствующую функцию в настройках (кнопка "Config"). Честно говоря, данные Loss у нас вызвали сомнение, так как программа для любого сервера, если таковой был доступен, стабильно указывала 0%, в то время как другие утилиты были не столь лояльны.

 

Тема: Номенклатура и особенности работы тест-программ







Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: