Загальна характеристика роботи

 

Актуальність теми. Переважна більшість течій рідин та газів, що відбуваються в природі, відтворюються в лабораторних умовах чи реалізуються в техніці, відносяться до вихрових рухів, коли елементарні об’єми (частинки) приймають участь в обертальному русі. При обтіканні різних тіл рідиною у випадках, коли вихровий рух може бути замінений системою приєднаних та вільних вихрів, існуюча гідродинамічна теорія дозволяє розрахувати, наприклад, підіймальну силу та індуктивний опір. В той же час питання стосовно потужних атмосферних вихрів потребує подальшого вивчення. Справа в тому, що механізми зародження та розвитку торнадо і тайфунів на даний час не є до кінця з’ясованими. Тому дослідження альтернативних механізмів зародження та еволюції таких вихрових рухів становить великий теоретичний і практичний інтерес.

Ще однією фізичною системою, де поява вихрів суттєво змінює характер руху рідини, є надплинний Не ІІ. При відносно великих швидкостях обертання надплинної рідини в ній з’являються вихрові нитки, які є паралельними до вісі обертання. Відомо, що елементарні збудження, які з’являються в надплинній компоненті, можуть розсіюватися на цих вихрових нитках і приводити до появи взаємного тертя між нормальною та надплинною компонентами. Вплив цього механізму на процес розпаду перенасиченої суміші 3Не та 4Не досі не вивчався.

Дисертаційна робота присвячена застосуванню нового нещодавно запропонованого механізму появи та еволюції нестійких гідродинамічних вихрів у системах з об’ємним стоком речовини (Е.А. Пашицький, 2002 р.). Цей механізм, на нашу думку, є універсальним і може з єдиної точки зору пояснити особливості фізичних процесів, які за певних умов, виникають в наступних, здавалося б зовсім різних фізичних системах: потужних атмосферних вихорах, перенасиченому розчині 3Не-4Не, гарячій (високозбудженій) ядерній матерії, що утворюється при ультрарелятивістському зіткненні важких ядер, та в резонансно-збудженому газі. Вивчення фізичних властивостей трьох останніх фізичних систем є основними напрямками наукової діяльності кафедри квантової теорії поля Київського національного університету імені Тараса Шевченка.

Застосування нових, оригінальних результатів теорії, що пов’язана з виникненням та розвитком нестійких гідродинамічних вихрів в цих системах, дозволило пояснити деякі експериментальні дані з єдиної точки зору. Це в значній мірі виправдовує вибір теми для дисертації і свідчить про її актуальність на даний час. Більш того, деякі теоретично передбачені в даній моделі нові ефекти також підвищують цінність вибраної теми.

Слід також відмітити, що застосування отриманих результатів по зародженню та розвитку гідродинамічної нестійкості не обмежується фізичними системами, що розглянуті у дисертації. Її результати можуть бути застосовані також і до пісчаних бурь, „вогняних” торнадо, що виникають на великих пожежах, до вихрового руху магми Землі, а також до інших багатокомпонентних систем з фазовими перетвореннями, що забезпечують появу нестійкого вихрового руху в системі.

Зв’язок роботи з науковими програмами, планами, темами. Робота є складовою частиною д/б теми "Електро- і магнітооптика гетерогенних рідкокристалічних та інших структурно подібних систем", № 01 БФ 051–07 (номер державної реєстрації 0101U002881).

Задачі і мета дослідження. Мета роботи полягає у описі механізмів гідродинамічної нестійкості вихрового руху в системах з об’ємним стоком та вертикальними потоками речовини, детальному аналізі характеристик цих механізмів, еволюції нестійкості та застосуванні отриманих результатів до різних фізичних систем.

Задачі дослідження полягали в аналітичному отриманні нестійких (наростаючих в часі) вихрових розв’язків рівняння Нав’є-Стокса для нестисливої багатокомпонентної рідини (газу) з наявністю об’ємного стоку речовини за рахунок фазових перетворень чи ядерних реакцій;

дослідженні еволюції і характеристик отриманих розв’язків, опису організації об’ємного стоку, а також виявлення основних механізмів стабілізації вихрового руху;

застосуванні теорії розвитку нестійких гідродинамічних вихрів до різних фізичних систем: потужних атмосферних вихрів, перенасиченого розчину 3Не-4Не, гарячої ядерної матерії, що утворюється при ультрарелятивістському зіткненні важких ядер та до резонансно-збудженого газу.

Об’єктом дослідження є механізм гідродинамічної нестійкості вихрового руху в системах з об’ємним стоком речовини та організація об’ємного стоку в різних фізичних системах при фазових перетвореннях. Предметом дослідження є новий клас точних розв’язків гідродинамічних рівнянь, що описують нестійкі гідродинамічні вихори. Методи дослідження: метод розділення змінних, методи теорії збурень та послідовних наближень, числові методи інтегрування та розв'язання диференціальних рівнянь.

Наукова новизна одержаних результатів. Наукова новизна отриманих у дисертації результатів полягає в тому, що в роботі було вперше:

детально проаналізовано механізми нестійкості та механізми стабілізації вихрового руху в системах з об’ємним стоком речовини; знайдено профіль швидкості в області тангенціального розриву на границі області об’ємного стоку; з використанням спостережуваних даних та запропонованого механізму нестійкості оцінено потужність об’ємного стоку у хмарі перенасиченої водяної пари та характерні часи зародження торнадо і тайфунів;

запропоновано загальний метод для знаходження “умовно бездисипативних розв’язків” рівнянь Нав’є-Стокса (які зануляють в них в’язкі доданки) у циліндричній та сферичній системі координат; результати для аксіально-несиметричних та сферичних розв’язків застосовано до відповідних фізичних систем;

показано, що нестійкість „твердотільного” обертання доменів розпаду в процесі розшарування перенасиченого розчину 3Не-4Не може приводити до прискорення гетерогенного розпаду розчину порівняно із гомогенним розпадом за рахунок збільшення густини квантованих вихрів у системі при наростанні кутової швидкості надплинної компоненти;

показано, що гідродинамічна нестійкість обертання згустку гарячої ядерної матерії (фаєрболу), що утворюється при зіткненні релятивістських важких ядер з великими орбітальними моментами може приводити до експериментально спостережуваних змін у розподілах вилітаючих частинок; досліджено вплив скінченності просторових розмірів та часу життя фаєрбола (як області об’ємного стоку) на розподіл теплових дилептонів, що утворюються при анігіляції р-мезонів;

знайдено, що утворення квазімолекул (збуджених станів молекул, які не існують в основному стані) може чинити стабілізуючий ефект на нестійкість вихрового руху у резонансно-збудженому газі; розраховано параметри та час життя квазімолекул і показано їх метастабільність; обчислено рівноважні концентрації квазімолекул у резонансно-збудженому газі при дії лазерної накачки.

Наукове та практичне значення роботи. Наукове та практичне значення одержаних результатів полягає у встановленні та дослідженні механізмів гідродинамічної нестійкості вихрового руху в системах з об’ємним стоком речовини. Отримані результати мають загальнотеоретичний характер і можуть бути застосовані до багатьох різних багатокомпонентних фізичних систем з фазовими перетвореннями, які або зустрічаються у природі, або виготовляються штучно для експериментів. Результати можуть безпосередньо використовуватись для пояснення певних розбіжностей між існуючими теоріями та експериментом для фізичних систем, в яких визначальну роль грає гідродинамічний вихровий рух, та для передбачення нових ефектів у таких системах.

Особистий внесок здобувача. У роботах [1-12], які лягли в основу дисертації, здобувач приймав участь на всіх етапах роботи. В роботах [1,8] автор приймав участь в обговоренні проблеми та результатів оцінок чи розрахунків. В роботі [2] автору належать результати по розрахунку профілю гідродинамічного вихору із врахуванням турбулентної в’язкості, аналізу механізмів стабілізації вихрового руху та оцінки їх характерних часів, а також застосування теорії дифузії вихору. В роботі [3] автор проводив усі розрахунки параметрів квазімолекул та робив оцінки часу їх життя. В роботі [4] автор приймав участь у проведенні числових розрахунків і обговоренні результатів щодо порівняння з експериментом. В роботі [5] здобувач брав участь в отриманні аналітичних результатів. В роботі [6] автор обговорював постановку задачі, проводив розрахунки та формулював висновки. Постановка задачі, результати і висновки роботи [7] належать автору. В роботах [9-12] дисертант брав участь у проведенні оцінок, отриманні та обговоренні результатів.

Апробація результатів дисертації. Матеріали дисертації доповідались на наступних конференціях: на міжнародній конференції "Selected Problems of Modern Physics", (м. Дубна, Росія) у 2003 р., на 2-й та 3-й міжнародних конференціях "Physics of Liquid Matter. Modern problems" (PLM MP) (м. Київ) у 2003 та 2005 роках, на міжнародній конференції "Фундаментальные исследования материи в экстремальных состояниях" (м. Москва) у 2004 р. і на міжнародній конференції "NATO ARW: Vortex Dynamics in Superconductors & Other Complex Systems" (м. Ялта) у 2004 р.

Результати роботи також обговорювалися на семінарах відділу високих густин енергії Інституту теоретичної фізики НАН України в 2003-2005 роках та на розширеному семінарі кафедри квантової теорії поля Київського національного університету імені Тараса Шевченка (2005 р.).

Публікації. Основні результати дисертації було опубліковано в 8 статтях у наукових фахових журналах, а також додатково висвітлена у 4 матеріалах міжнародних конференцій. Всього за темою дисертації опубліковано 12 робіт, перелік яких наведено у заключній частині автореферату.

Структура дисертаційної роботи. Дисертаційна робота складається із вступу, чотирьох розділів, висновків, списку використаних джерел, що містить 75 найменувань на 8 сторінках. Загальний обсяг дисертації – 120 сторінок машинописного тексту. Робота включає 1 таблицю та 15 рисунків на 7 сторінках.

 




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: