Статистическое толкование второго закона

Второй закон термодинамики констатирует необратимость тепловых процессов в природе, однако не дает ему никакого объяснения. Объяснение может быть получено на основании молекулярно-кинетической теории, которую мы с вами хорошо уже знаем. Если взять простейшую модель газа, совокупность упругих шариков, то газ в целом будет обнаруживать определенную направленность поведений. Например, будучи сжатым в половине сосуда (см. рис. 3), он начнет расширяться и займет весь сосуд, снова он не сожмется. Уравнение движения каждой молекулы, шарика обратимо во времени, так как содержат только силы, зависящие от расстояния и проявляющиеся при столкновении молекул.

Рис. 3. Модель газа в сосуде

Таким образом, задача состоит не только в объяснении необратимости макроскопических процессов, но и в объяснении соответствия необратимости макропроцессов обратимости микропроцессов, которые описываются уравнениями Ньютона.

Заслуга в нахождении принципиально правильно подхода к решению этой проблемы принадлежит австрийскому ученому Больцману. Сама теория Больцмана достаточно сложна, поэтому приведем некоторые упрощенные примеры, которые позволять вам понять идею, лежащую в основе теории Больцмана.

Допустим, с понедельника вы решили начать новую жизнь, непременным условием этого является идеальный или близкий к идеальному порядок на письменном столе. Вы расставляете все предметы и книги на строго определенные места, и у вас на столе царит состояние, которое в полном праве можно назвать порядком. Что произойдет с течением времени, хорошо известно. Вы забываете ставить предметы и книги на строго определенные места, и в итоге через некоторое время на столе воцаряется состояние хаоса. Нетрудно понять, с чем это связано: состоянию порядка отвечает только одно определенное расположение предметов, а состоянию хаоса – несравнимо большее число предметов, и, как только предметы начинают занимать произвольное положение, не контролируемое вашей волей, на столе само собой возникает более вероятное состояние, т. е. состояние хаоса. Точно так же и с молекулами: в силу хаотичности их движения молекулы воздуха, например в комнате, будут занимать весь предоставленный объем, ведь это более куда вероятная ситуация, чем если бы они случайным образом скопились, например в одном углу. Таким образом, вероятностный или, как говорят в физике, статистический подход, который впервые предложил Больцман, позволяет понять, почему тепловые процессы являются необратимыми.

Равновесные и неравновесные процессы

Поговорим о равновесных и неравновесных процессах. В обратимых процессах система проходила бы в обратном направлении, через те же самые состояния, что и в прямом, менялся лишь бы только порядок этих состояний. Вспомните пример с пластилином: если бы все происходило обратимо, то у нас бы менялся только порядок движения руками. Еще одним примером обратимого процесса могли бы быть колебания идеального маятника.

Как мы помним, состоянием термодинамического равновесия системы называется такое ее состояние, в котором для системы определены численные значения всех макроскопических параметров: давление, объем, температура. На любых диаграммах равновесное состояние изображается точкой (см. рис. 4). Равновесный же процесс представляет из себя цепочку равновесных состояний. На диаграммах равновесный процесс будет изображаться непрерывной линией. Процесс можно считать равновесным, если изменение параметров происходит очень медленно, фактически можно считать, что система последовательно переходит от одного равновесного состояния к другому, такие процессы еще называют квазистатическими.

Рис. 4. Изображения равновесного состояния на диаграмме

Пример квазистатического равновесного процесса: пусть имеется вертикальный цилиндр с газом под поршнем (см. рис. 5). Положим на поршень песчинку, потом другую, третью, сотую, тысячную, получим чрезвычайно медленное сжатие газа, представляющее собой череду сменяющих друг друга равновесных состояний. А теперь будем снимать песчинки обратно, все так же по одной, получим квазистатическое равновесное расширение газа, при этом газ пройдет в обратном направлении, причем через те же самые состояния, которые он проходил в предыдущем процессе равновесного сжатия. Действительно, раз при каждом движении поршня успевает установиться тепловое равновесие, то значение макропараметров определяется только самым положением поршня, но никак не направлением его движения вверх или в низ. Таким образом, мы видим, что равновесный процесс является обратимым, его можно провести в обратном направлении через ту же самую цепочку равновесных состояний.

Рис. 5. Вертикальный цилиндр с газом под поршнем

На диаграммах состояния (см. рис. 6) обратимый процесс идет по одной и той же линии как в прямом, так и в обратном направлении.

Рис. 6. Диаграмма состояния процесса при сжатии

При решении задач об идеальном газе в рамках молекулярно-кинетической теории мы, кстати, негласно полагаем все процессы равновесными. В реальности, конечно же, следует понимать, что это не совсем так. Вернемся к примеру с поршнем (см. рис. 5): если вместо песчинок на поршень поставить увесистую гирю, то процесс сжатия газа пойдет очень быстро. Давление газа непосредственно под поршнем будет больше, чем у дна сосуда, и мы уже не сможем охарактеризовать состояние газа в каждый момент времени каким-то одним значением давления. Состояния, проходимые газом, не будут состояниями теплового равновесия, потому что макропараметры: давление, температура, объем – не будут успевать принимать определенные значения для всего газа, в разных точках газа они будут разными. Стало быть, процесс быстрого сжатия газа будет не равновесным, кроме того, такой процесс будет необратимым, ведь если столь же быстро расширять газ, то давление непосредственно под поршнем теперь окажется меньше, чем у дна сосуда. Следовательно, при быстром расширении газ проходит через другую цепочку состояний, чем в процессе сжатия (см. рис. 7).

Рис. 7. Диаграмма состояния процесса при расширении

Можно обобщить: процессы, идущие бесконечно медленно, являются обратимыми. Это идеализация. Реальные процессы идут с конечной скоростью и потому необратимы.

Вывод

Вот мы и подошли к разрешению проблемы, о которой мы говорили в начале урока. Почему же в комнате сам собой не образуется порядок, а так просто образуется хаос? Очевидно, речь как раз идет о таких равновесных и неравновесных процессах с точки зрения термодинамики, а с точки зрения нашей жизни – обратимых или необратимых процессах. Более подробно об этом идет речь во втором ответвлении.

Теперь мы знаем, в каком направлении могут происходить самопроизвольные тепловые процессы. В ходке таких процессов любая система стремится к тепловому равновесию, теплое тело отдает тепло холодному до тех пор, пока температуры у них не выровняются, именно об этом говорит второй закон термодинамики, который мы сформулировали на этом уроке.

 

Список литературы

1. Касьянов В.А. Физика 10 класс. – М.: Дрофа, 2010.

2. Мякишев Г.Я., Синяков А.З. Молекулярная физика. Термодинамика. – М.: Дрофа, 2010.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: