Как же астрономы измеряют температуру Вселенной?

 

Инфракрасное (ИК) излучение с длиной волны от 700 нм до 1 мм было открыто в 1800 Уильямом Гершелем (1738–1822).

 

Гершель использовал призму, чтобы получить спектр солнечного света, от красного до синего. Он использовал обыкновенные термометры для измерения энергии в спектре.

 

Он отметил, что термометр вне красной части спектра также нагревается в результате воздействия невидимого длинноволнового излучения.

 

Сегодня инфракрасное излучение (тепловое излучение) известно и используется в очках ночного видения и видеокамерах для записи ночных сцен.

 

В астрономии холодные объекты, такие как темные облака пыли, выделяют большую часть своей энергии в виде ИК волн. ИК астрономия показывает пыльную Вселенную.

 

Пыль также прозрачна для инфракрасного света. Инфракрасные телескопы показывают протозвезды, встроенные в облака пыли, даже когда видимый свет поглощается.

 

Проблема: космическое ИК излучение частично поглощается водяным паром в атмосфере Земли. Телескоп должен быть на высокой горе или в космосе.

 

Сегодня большинство гигантских наземных телескопов (например, Кек и VLT) оснащены камерами видимого света и ближними ИК-детекторами.

 

Первые ИК-детекторы не имели четкой направленной чувствительности. Вы не могли использовать их, чтобы сделать снимки инфракрасного неба, получались только размытые снимки.

 

Теперь даже обычные видеокамеры содержат ИК-чувствительные электронные ПЗС-детекторы. Современные технологии/возможности сопоставимы с оптическими детекторами.

 

Чтобы иметь возможность «видеть» слабое ИК излучение из космоса, детекторы всегда должны быть охлаждены, иметь близкую к абсолютному нулю температуру (например, жидкого гелия).

 

Первые ИК карты всего неба были сделаны спутником IRAS (1983). Обнаружено 350 000 источников, в том числе протопланетные диски и далекие пыльные галактики.

 

Затем последовали ИК космические телескопы типа Spitzer Space Telescope (НАСА, 2003) и Herschel (ЕКА, 2009). «Хаббл» также имеет камеру, работающую в ближней ИК области.

 

Будущий 6,5-метровый James Webb Space Telescope (HACA/EKA преемник «Хаббла», запуск в 2018) будет вести наблюдения в основном в ИК диапазоне.

 

Как выглядит ультрафиолетовое небо?

 

Ультрафиолетовый (УФ) свет имеет длину волны от 10 до 400 нанометров (нм). Невидимый для человеческого глаза, но некоторые животные, например такие как пчелы, видят в этом диапазоне.

 

УФ фотоны несут в себе гораздо больше энергии, чем фотоны видимого света. Поэтому ультрафиолетовый свет от Солнца вызывает солнечные ожоги или даже рак кожи.

 

К счастью, большая часть УФ излучения поглощается в атмосфере Земли, в основном озоном. Вот почему вызывает опасение угроза атаки озонового слоя ХФУ-газами (хлорфторуглероды).

 

Только очень горячие объекты, такие как молодые массивные звезды и маленькие белые карлики, излучают большую часть своей энергии в виде ультрафиолетовых волн.

 

Большинство звезд более тусклые в УФ, чем в видимом диапазоне. Так что, будь у нас УФ-чувствительные глаза, ночное небо выглядело бы весьма невыразительным.

 

Космическое ультрафиолетовое излучение можно изучать только из космоса. Известные УФ спутники: International Ultraviolet Explorer (IUE, [1978–1996]), FUSE (1999).

 

Космический телескоп «Хаббл» также имеет УФ спектрограф/камеру STIS. Установлен в 1997, вышел из строя в 2004, отремонтирован космонавтами в 2009.

 

Настоящий наиболее активный УФ космический телескоп — это GALEX (Galaxy Evolution Explorer), запущенный в 2003. Исследует формирование звезд в отдаленных галактиках.

 

УФ телескопы могут также обнаружить присутствие тепло-горячей межгалактической среды (WHIM): очень разреженного газа между галактиками и скоплениями галактик.

 

Присутствие атомов кислорода и азота в WHIM выявляется при отрыве электронов за счет поглощения определенных частот УФ излучения от далеких квазаров.

 

Между тем, УФ камеры на борту солнечных космических телескопов, таких как SOHO и Solar Dynamics Observatory, отслеживают взрывы вспышек на Солнце.

 

Как астрономы делают рентген Вселенной?

 

Самые высокоэнергетические виды излучения в природе — рентгеновские лучи (Х-лучи, длина волны 0,01–10 нм) и гамма-лучи (все, что короче 0,01 нм).

 

На Земле рентгеновские лучи используются в медицинских целях. Энергия их квантов достаточна для прохождения через ткани человека; могут вызвать рак, если доза слишком велика.

 

Гамма-лучи: обладают еще большей энергией квантов. Образуются в ядерных реакциях. Могут быть смертельными. К счастью, атмосфера Земли блокирует космические X- и гамма-лучи.

 

Ракетный эксперимент в 1949 обнаружил рентгеновское излучение Солнца. В 1962 еще один ракетный эксперимент обнаружил первый космический рентгеновский источник, Скорпион Х-1.

 

С тех пор летали многие рентгеновские спутники, в том числе Chandra (НАСА) и XMM-Newton (ЕКА), которые функционируют и в настоящее время.

 

Рентгеновские лучи проходят сквозь зеркало телескопа, поэтому нужна специальная оптика и/или детекторы, чтобы получить спектры или создать рентгеновский образ неба.

 

Рентгеновские лучи генерируются чрезвычайно горячим газом (млн градусов), например когда он втягивается в черную дыру или сотрясается в остатках сверхновой.

 

Спутники с гамма-излучением: Комптоновская обсерватория (1991–2000), а также Integral (ЕКА) и Fermi (НАСА) — функционируют и в настоящее время.

 

Важная область исследований: всплески гамма-лучей. Большинство событий во Вселенной, сопровождающихся выбросом энергии, вызваны взрывающимися звездами-гигантами или слиянием нейтронных звезд.

 

Взаимная аннигиляция материи и антиматерии и распад гипотетических частиц темной материи также производит рассеянные гамма-лучи.

 

Высокоэнергетические фотоны гамма-лучей генерируют поток вторичных частиц в атмосфере Земли, наблюдаемых с помощью наземных инструментов.

 

Рентгеновские и гамма-лучи открывают высокоэнергетическую Вселенную ищущим острых ощущений астрономам: горячие, самые яростные и самые взрывоопасные события в природе.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: