Автомобильные светодиоды

Светодиоды применяются в щитках приборов на передней панели, в отдельных узлах для подсветки кнопок и ручек управления вместо миниатюрных ламп накаливания. Светодиодные линейки используются в сигналах торможения и световых индикаторах для построения шкал и цифр.

Светодиоды обладают значительно большей надежностью. Их срок службы превышает срок службы автомобиля. Изделие, выполненное на светодиодных материалах, сохраняет функциональное назначение при выходе из строя одного или нескольких светодиодов, в то время как при перегорании нити накала лампы изделие полностью прекращает вы­полнять свои функции.

Цвет излучения светодиода, сила света и световой поток зависят от силы потребляемого тока. Длина волны и интенсивность излучаемого света зависят от температуры.

В связи с тем, что температура полупроводникового перехода в пер­вую очередь определяется силой тока, то особое внимание необходимо уделять правильному выбору силы тока при конструировании светоди­одного прибора и поддержанию заданной си­лы тока при эксплуата­ции. Номинальная сила тока в прямом направ­лении указывается в технической характери­стике светодиода. Схемотехническое ре­шение по стабилизации силы тока определяется качеством напряжения питания. Не рекоменду­ется параллельное или смешанное соединение группы светодиодов, так как из-за разброса параметров, несмотря на то, что светодиоды разбиты по классам, сила тока в них не будет одинаковой и, следова­тельно, интенсивность их излучения будет различной. Для большинства групп светодиодов целесообразно использование стабилизированных источников тока.

Диоды могут иметь сферическую, куполообразную форму или плоский верх. Частью корпуса может быть линза как бес­цветная, так и окрашенная в цвет излучения светодиода.

Ксеноновые лампы

На автомобилях находят применение новые источники света — ксеноновые лампы, спектр излучения которых близок к солнечному свету. Светоизлучение ксеноновой лампы обеспечивает дуговой разряд меж­ду электродами, которые расположены в колбе, заполненной инертным газом. Ксеноновые лампы не перегорают, устойчивы к вибрации, их светоотдача достигает 80 лм/Вт.

Однако, чтобы ионизировать инертный газ, необходимо обеспечить пробой междуэлектродного промежутка начальным импульсом напря­жения 20 кВ. Кроме того, рабочий режим лампы обеспечивается при подаче на электроды переменного тока напряжением 330 В и частотой 300 Гц. Эти проблемы в настоящее время решаются с помощью полу­проводниковых преобразователей путем трехступенчатого преобразо­вания напряжения.

Ксеноновая лампа D1 массой 15 г благодаря большей светоотдаче имеет мощность 35 Вт. В то же время масса преобразователя составляет примерно 0,5 кг. Для установки на автомобиле системы освещения с ксеноновой лампой необходимо использовать как минимум два ком­плекта таких преобразователей, чтобы обеспечить требуемое светораспределение фар дальнего и ближнего света. Все это делает систему го­ловного освещения достаточно сложной и дорогостоящей.

Фары головного освещения

Формирование светового пучка в фарах прожекторного типа

В темное время суток при высоких скоростях движения необходимо освещать дорогу и обочину перед автомобилем на расстоянии 50—250 м. Это позволяет водителю своевременно оценивать дорож­ную обстановку и избегать столкновений с препятствиями. Для освещения дороги на автомобили и другие автотранспортные средства ус­танавливают фары и прожекторы. Распределение света фары на дороге зависит от конструкции оптического элемента и установленной в нем лампы.

Световой пучок фары может быть сформирован прожекторным или проекторным методом. Наиболее распространенный прожекторный метод обеспечивает концентрацию светового потока источника тока отражателем и его перераспределение в соответствии с заданным режи­мом освещения рассеивателем. Для концентрации светового пучка при таком методе его формирования используется параболоидный отража­тель с круглым или прямоугольным (усеченным) отверстием.

В качестве преломляющих элементов используются цилиндриче­ские, сферические и эллипсоидные линзы, призмы и линзы-призмы. В зависимости от преломляющей структуры рассеивателя добиваются изменения как формы светового пучка, так и силы света в различных направлениях светораспределения.

Поверхность отражателей, штампуемых из стали, покрывают слоем лака (для создания более гладкой поверхности) и алюминируют. Коэф­фициент отражения алюминиевого покрытия достигает 0,9. Качество отражающего слоя, так же как и точность геометрической формы отра­жателя, существенно влияет на характеристики светораспределения фары.

Отражатели в оптических элементах автомобильных фар и прожек­торов предохраняют от воздействия окружающей среды защитными стеклами. В фарах головного освещения защитные стекла — рассеиватели осуществляют вторичное распределение светового потока в вер­тикальной и горизонтальной плоскостях, обеспечивая требуемый уро­вень освещенности на различных участках дорожного полотна. При из­готовлении в пресс-формах на внутренней поверхности рассеивателя формируют линзы и призмы. Вертикальные цилиндрические линзы рассеивают световой пучок в стороны. Сферические линзы позволяют по­лучить световой пучок, одинаково рассеянный в обеих плоскостях. При эллипсоидных линзах получают различные углы рассеяния светового пучка во взаимно перпендикулярных плоскостях. В случае использова­ния призм добиваются изменения распространения части светового потока в результате соответствующей ориентации ее преломляющей грани.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: